| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file block_buffer_encoder.c |
| /// \brief Single-call .xz Block encoder |
| // |
| // Author: Lasse Collin |
| // |
| // This file has been put into the public domain. |
| // You can do whatever you want with this file. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "block_buffer_encoder.h" |
| #include "block_encoder.h" |
| #include "filter_encoder.h" |
| #include "lzma2_encoder.h" |
| #include "check.h" |
| |
| |
| /// Estimate the maximum size of the Block Header and Check fields for |
| /// a Block that uses LZMA2 uncompressed chunks. We could use |
| /// lzma_block_header_size() but this is simpler. |
| /// |
| /// Block Header Size + Block Flags + Compressed Size |
| /// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check |
| /// and round up to the next multiple of four to take Header Padding |
| /// into account. |
| #define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \ |
| + LZMA_CHECK_SIZE_MAX + 3) & ~3) |
| |
| |
| static uint64_t |
| lzma2_bound(uint64_t uncompressed_size) |
| { |
| // Prevent integer overflow in overhead calculation. |
| if (uncompressed_size > COMPRESSED_SIZE_MAX) |
| return 0; |
| |
| // Calculate the exact overhead of the LZMA2 headers: Round |
| // uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX, |
| // multiply by the size of per-chunk header, and add one byte for |
| // the end marker. |
| const uint64_t overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1) |
| / LZMA2_CHUNK_MAX) |
| * LZMA2_HEADER_UNCOMPRESSED + 1; |
| |
| // Catch the possible integer overflow. |
| if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size) |
| return 0; |
| |
| return uncompressed_size + overhead; |
| } |
| |
| |
| extern uint64_t |
| lzma_block_buffer_bound64(uint64_t uncompressed_size) |
| { |
| // If the data doesn't compress, we always use uncompressed |
| // LZMA2 chunks. |
| uint64_t lzma2_size = lzma2_bound(uncompressed_size); |
| if (lzma2_size == 0) |
| return 0; |
| |
| // Take Block Padding into account. |
| lzma2_size = (lzma2_size + 3) & ~UINT64_C(3); |
| |
| // No risk of integer overflow because lzma2_bound() already takes |
| // into account the size of the headers in the Block. |
| return HEADERS_BOUND + lzma2_size; |
| } |
| |
| |
| extern LZMA_API(size_t) |
| lzma_block_buffer_bound(size_t uncompressed_size) |
| { |
| uint64_t ret = lzma_block_buffer_bound64(uncompressed_size); |
| |
| #if SIZE_MAX < UINT64_MAX |
| // Catch the possible integer overflow on 32-bit systems. |
| if (ret > SIZE_MAX) |
| return 0; |
| #endif |
| |
| return ret; |
| } |
| |
| |
| static lzma_ret |
| block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size, |
| uint8_t *out, size_t *out_pos, size_t out_size) |
| { |
| // Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at |
| // all, but LZMA2 always requires a dictionary, so use the minimum |
| // value to minimize memory usage of the decoder. |
| lzma_options_lzma lzma2 = { |
| .dict_size = LZMA_DICT_SIZE_MIN, |
| }; |
| |
| lzma_filter filters[2]; |
| filters[0].id = LZMA_FILTER_LZMA2; |
| filters[0].options = &lzma2; |
| filters[1].id = LZMA_VLI_UNKNOWN; |
| |
| // Set the above filter options to *block temporarily so that we can |
| // encode the Block Header. |
| lzma_filter *filters_orig = block->filters; |
| block->filters = filters; |
| |
| if (lzma_block_header_size(block) != LZMA_OK) { |
| block->filters = filters_orig; |
| return LZMA_PROG_ERROR; |
| } |
| |
| // Check that there's enough output space. The caller has already |
| // set block->compressed_size to what lzma2_bound() has returned, |
| // so we can reuse that value. We know that compressed_size is a |
| // known valid VLI and header_size is a small value so their sum |
| // will never overflow. |
| assert(block->compressed_size == lzma2_bound(in_size)); |
| if (out_size - *out_pos |
| < block->header_size + block->compressed_size) { |
| block->filters = filters_orig; |
| return LZMA_BUF_ERROR; |
| } |
| |
| if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) { |
| block->filters = filters_orig; |
| return LZMA_PROG_ERROR; |
| } |
| |
| block->filters = filters_orig; |
| *out_pos += block->header_size; |
| |
| // Encode the data using LZMA2 uncompressed chunks. |
| size_t in_pos = 0; |
| uint8_t control = 0x01; // Dictionary reset |
| |
| while (in_pos < in_size) { |
| // Control byte: Indicate uncompressed chunk, of which |
| // the first resets the dictionary. |
| out[(*out_pos)++] = control; |
| control = 0x02; // No dictionary reset |
| |
| // Size of the uncompressed chunk |
| const size_t copy_size |
| = my_min(in_size - in_pos, LZMA2_CHUNK_MAX); |
| out[(*out_pos)++] = (copy_size - 1) >> 8; |
| out[(*out_pos)++] = (copy_size - 1) & 0xFF; |
| |
| // The actual data |
| assert(*out_pos + copy_size <= out_size); |
| memcpy(out + *out_pos, in + in_pos, copy_size); |
| |
| in_pos += copy_size; |
| *out_pos += copy_size; |
| } |
| |
| // End marker |
| out[(*out_pos)++] = 0x00; |
| assert(*out_pos <= out_size); |
| |
| return LZMA_OK; |
| } |
| |
| |
| static lzma_ret |
| block_encode_normal(lzma_block *block, const lzma_allocator *allocator, |
| const uint8_t *in, size_t in_size, |
| uint8_t *out, size_t *out_pos, size_t out_size) |
| { |
| // Find out the size of the Block Header. |
| return_if_error(lzma_block_header_size(block)); |
| |
| // Reserve space for the Block Header and skip it for now. |
| if (out_size - *out_pos <= block->header_size) |
| return LZMA_BUF_ERROR; |
| |
| const size_t out_start = *out_pos; |
| *out_pos += block->header_size; |
| |
| // Limit out_size so that we stop encoding if the output would grow |
| // bigger than what uncompressed Block would be. |
| if (out_size - *out_pos > block->compressed_size) |
| out_size = *out_pos + block->compressed_size; |
| |
| // TODO: In many common cases this could be optimized to use |
| // significantly less memory. |
| lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT; |
| lzma_ret ret = lzma_raw_encoder_init( |
| &raw_encoder, allocator, block->filters); |
| |
| if (ret == LZMA_OK) { |
| size_t in_pos = 0; |
| ret = raw_encoder.code(raw_encoder.coder, allocator, |
| in, &in_pos, in_size, out, out_pos, out_size, |
| LZMA_FINISH); |
| } |
| |
| // NOTE: This needs to be run even if lzma_raw_encoder_init() failed. |
| lzma_next_end(&raw_encoder, allocator); |
| |
| if (ret == LZMA_STREAM_END) { |
| // Compression was successful. Write the Block Header. |
| block->compressed_size |
| = *out_pos - (out_start + block->header_size); |
| ret = lzma_block_header_encode(block, out + out_start); |
| if (ret != LZMA_OK) |
| ret = LZMA_PROG_ERROR; |
| |
| } else if (ret == LZMA_OK) { |
| // Output buffer became full. |
| ret = LZMA_BUF_ERROR; |
| } |
| |
| // Reset *out_pos if something went wrong. |
| if (ret != LZMA_OK) |
| *out_pos = out_start; |
| |
| return ret; |
| } |
| |
| |
| static lzma_ret |
| block_buffer_encode(lzma_block *block, const lzma_allocator *allocator, |
| const uint8_t *in, size_t in_size, |
| uint8_t *out, size_t *out_pos, size_t out_size, |
| bool try_to_compress) |
| { |
| // Validate the arguments. |
| if (block == NULL || (in == NULL && in_size != 0) || out == NULL |
| || out_pos == NULL || *out_pos > out_size) |
| return LZMA_PROG_ERROR; |
| |
| // The contents of the structure may depend on the version so |
| // check the version before validating the contents of *block. |
| if (block->version != 0) |
| return LZMA_OPTIONS_ERROR; |
| |
| if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX |
| || (try_to_compress && block->filters == NULL)) |
| return LZMA_PROG_ERROR; |
| |
| if (!lzma_check_is_supported(block->check)) |
| return LZMA_UNSUPPORTED_CHECK; |
| |
| // Size of a Block has to be a multiple of four, so limit the size |
| // here already. This way we don't need to check it again when adding |
| // Block Padding. |
| out_size -= (out_size - *out_pos) & 3; |
| |
| // Get the size of the Check field. |
| const size_t check_size = lzma_check_size(block->check); |
| assert(check_size != UINT32_MAX); |
| |
| // Reserve space for the Check field. |
| if (out_size - *out_pos <= check_size) |
| return LZMA_BUF_ERROR; |
| |
| out_size -= check_size; |
| |
| // Initialize block->uncompressed_size and calculate the worst-case |
| // value for block->compressed_size. |
| block->uncompressed_size = in_size; |
| block->compressed_size = lzma2_bound(in_size); |
| if (block->compressed_size == 0) |
| return LZMA_DATA_ERROR; |
| |
| // Do the actual compression. |
| lzma_ret ret = LZMA_BUF_ERROR; |
| if (try_to_compress) |
| ret = block_encode_normal(block, allocator, |
| in, in_size, out, out_pos, out_size); |
| |
| if (ret != LZMA_OK) { |
| // If the error was something else than output buffer |
| // becoming full, return the error now. |
| if (ret != LZMA_BUF_ERROR) |
| return ret; |
| |
| // The data was uncompressible (at least with the options |
| // given to us) or the output buffer was too small. Use the |
| // uncompressed chunks of LZMA2 to wrap the data into a valid |
| // Block. If we haven't been given enough output space, even |
| // this may fail. |
| return_if_error(block_encode_uncompressed(block, in, in_size, |
| out, out_pos, out_size)); |
| } |
| |
| assert(*out_pos <= out_size); |
| |
| // Block Padding. No buffer overflow here, because we already adjusted |
| // out_size so that (out_size - out_start) is a multiple of four. |
| // Thus, if the buffer is full, the loop body can never run. |
| for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) { |
| assert(*out_pos < out_size); |
| out[(*out_pos)++] = 0x00; |
| } |
| |
| // If there's no Check field, we are done now. |
| if (check_size > 0) { |
| // Calculate the integrity check. We reserved space for |
| // the Check field earlier so we don't need to check for |
| // available output space here. |
| lzma_check_state check; |
| lzma_check_init(&check, block->check); |
| lzma_check_update(&check, block->check, in, in_size); |
| lzma_check_finish(&check, block->check); |
| |
| memcpy(block->raw_check, check.buffer.u8, check_size); |
| memcpy(out + *out_pos, check.buffer.u8, check_size); |
| *out_pos += check_size; |
| } |
| |
| return LZMA_OK; |
| } |
| |
| |
| extern LZMA_API(lzma_ret) |
| lzma_block_buffer_encode(lzma_block *block, const lzma_allocator *allocator, |
| const uint8_t *in, size_t in_size, |
| uint8_t *out, size_t *out_pos, size_t out_size) |
| { |
| return block_buffer_encode(block, allocator, |
| in, in_size, out, out_pos, out_size, true); |
| } |
| |
| |
| extern LZMA_API(lzma_ret) |
| lzma_block_uncomp_encode(lzma_block *block, |
| const uint8_t *in, size_t in_size, |
| uint8_t *out, size_t *out_pos, size_t out_size) |
| { |
| // It won't allocate any memory from heap so no need |
| // for lzma_allocator. |
| return block_buffer_encode(block, NULL, |
| in, in_size, out, out_pos, out_size, false); |
| } |