| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file sha256.c |
| /// \brief SHA-256 |
| /// |
| /// \todo Crypto++ has x86 ASM optimizations. They use SSE so if they |
| /// are imported to liblzma, SSE instructions need to be used |
| /// conditionally to keep the code working on older boxes. |
| // |
| // This code is based on the code found from 7-Zip, which has a modified |
| // version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>. |
| // The code was modified a little to fit into liblzma. |
| // |
| // Authors: Kevin Springle |
| // Wei Dai |
| // Igor Pavlov |
| // Lasse Collin |
| // |
| // This file has been put into the public domain. |
| // You can do whatever you want with this file. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "check.h" |
| |
| // At least on x86, GCC is able to optimize this to a rotate instruction. |
| #define rotr_32(num, amount) ((num) >> (amount) | (num) << (32 - (amount))) |
| |
| #define blk0(i) (W[i] = conv32be(data[i])) |
| #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \ |
| + s0(W[(i - 15) & 15])) |
| |
| #define Ch(x, y, z) (z ^ (x & (y ^ z))) |
| #define Maj(x, y, z) ((x & y) | (z & (x | y))) |
| |
| #define a(i) T[(0 - i) & 7] |
| #define b(i) T[(1 - i) & 7] |
| #define c(i) T[(2 - i) & 7] |
| #define d(i) T[(3 - i) & 7] |
| #define e(i) T[(4 - i) & 7] |
| #define f(i) T[(5 - i) & 7] |
| #define g(i) T[(6 - i) & 7] |
| #define h(i) T[(7 - i) & 7] |
| |
| #define R(i, j, blk) \ |
| h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] + blk; \ |
| d(i) += h(i); \ |
| h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) |
| #define R0(i) R(i, 0, blk0(i)) |
| #define R2(i) R(i, j, blk2(i)) |
| |
| #define S0(x) (rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22)) |
| #define S1(x) (rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25)) |
| #define s0(x) (rotr_32(x, 7) ^ rotr_32(x, 18) ^ (x >> 3)) |
| #define s1(x) (rotr_32(x, 17) ^ rotr_32(x, 19) ^ (x >> 10)) |
| |
| |
| static const uint32_t SHA256_K[64] = { |
| 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, |
| 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, |
| 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, |
| 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, |
| 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, |
| 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, |
| 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, |
| 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, |
| 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, |
| 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, |
| 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, |
| 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, |
| 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, |
| 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, |
| 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, |
| 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, |
| }; |
| |
| |
| static void |
| transform(uint32_t state[8], const uint32_t data[16]) |
| { |
| uint32_t W[16]; |
| uint32_t T[8]; |
| |
| // Copy state[] to working vars. |
| memcpy(T, state, sizeof(T)); |
| |
| // The first 16 operations unrolled |
| R0( 0); R0( 1); R0( 2); R0( 3); |
| R0( 4); R0( 5); R0( 6); R0( 7); |
| R0( 8); R0( 9); R0(10); R0(11); |
| R0(12); R0(13); R0(14); R0(15); |
| |
| // The remaining 48 operations partially unrolled |
| for (unsigned int j = 16; j < 64; j += 16) { |
| R2( 0); R2( 1); R2( 2); R2( 3); |
| R2( 4); R2( 5); R2( 6); R2( 7); |
| R2( 8); R2( 9); R2(10); R2(11); |
| R2(12); R2(13); R2(14); R2(15); |
| } |
| |
| // Add the working vars back into state[]. |
| state[0] += a(0); |
| state[1] += b(0); |
| state[2] += c(0); |
| state[3] += d(0); |
| state[4] += e(0); |
| state[5] += f(0); |
| state[6] += g(0); |
| state[7] += h(0); |
| } |
| |
| |
| static void |
| process(lzma_check_state *check) |
| { |
| transform(check->state.sha256.state, check->buffer.u32); |
| return; |
| } |
| |
| |
| extern void |
| lzma_sha256_init(lzma_check_state *check) |
| { |
| static const uint32_t s[8] = { |
| 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, |
| 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, |
| }; |
| |
| memcpy(check->state.sha256.state, s, sizeof(s)); |
| check->state.sha256.size = 0; |
| |
| return; |
| } |
| |
| |
| extern void |
| lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check) |
| { |
| // Copy the input data into a properly aligned temporary buffer. |
| // This way we can be called with arbitrarily sized buffers |
| // (no need to be multiple of 64 bytes), and the code works also |
| // on architectures that don't allow unaligned memory access. |
| while (size > 0) { |
| const size_t copy_start = check->state.sha256.size & 0x3F; |
| size_t copy_size = 64 - copy_start; |
| if (copy_size > size) |
| copy_size = size; |
| |
| memcpy(check->buffer.u8 + copy_start, buf, copy_size); |
| |
| buf += copy_size; |
| size -= copy_size; |
| check->state.sha256.size += copy_size; |
| |
| if ((check->state.sha256.size & 0x3F) == 0) |
| process(check); |
| } |
| |
| return; |
| } |
| |
| |
| extern void |
| lzma_sha256_finish(lzma_check_state *check) |
| { |
| // Add padding as described in RFC 3174 (it describes SHA-1 but |
| // the same padding style is used for SHA-256 too). |
| size_t pos = check->state.sha256.size & 0x3F; |
| check->buffer.u8[pos++] = 0x80; |
| |
| while (pos != 64 - 8) { |
| if (pos == 64) { |
| process(check); |
| pos = 0; |
| } |
| |
| check->buffer.u8[pos++] = 0x00; |
| } |
| |
| // Convert the message size from bytes to bits. |
| check->state.sha256.size *= 8; |
| |
| check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size); |
| |
| process(check); |
| |
| for (size_t i = 0; i < 8; ++i) |
| check->buffer.u32[i] = conv32be(check->state.sha256.state[i]); |
| |
| return; |
| } |