| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file range_decoder.h |
| /// \brief Range Decoder |
| /// |
| // Authors: Igor Pavlov |
| // Lasse Collin |
| // |
| // This file has been put into the public domain. |
| // You can do whatever you want with this file. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifndef LZMA_RANGE_DECODER_H |
| #define LZMA_RANGE_DECODER_H |
| |
| #include "range_common.h" |
| |
| |
| typedef struct { |
| uint32_t range; |
| uint32_t code; |
| uint32_t init_bytes_left; |
| } lzma_range_decoder; |
| |
| |
| /// Reads the first five bytes to initialize the range decoder. |
| static inline lzma_ret |
| rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in, |
| size_t *restrict in_pos, size_t in_size) |
| { |
| while (rc->init_bytes_left > 0) { |
| if (*in_pos == in_size) |
| return LZMA_OK; |
| |
| // The first byte is always 0x00. It could have been omitted |
| // in LZMA2 but it wasn't, so one byte is wasted in every |
| // LZMA2 chunk. |
| if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00) |
| return LZMA_DATA_ERROR; |
| |
| rc->code = (rc->code << 8) | in[*in_pos]; |
| ++*in_pos; |
| --rc->init_bytes_left; |
| } |
| |
| return LZMA_STREAM_END; |
| } |
| |
| |
| /// Makes local copies of range decoder and *in_pos variables. Doing this |
| /// improves speed significantly. The range decoder macros expect also |
| /// variables `in' and `in_size' to be defined. |
| #define rc_to_local(range_decoder, in_pos) \ |
| lzma_range_decoder rc = range_decoder; \ |
| size_t rc_in_pos = (in_pos); \ |
| uint32_t rc_bound |
| |
| |
| /// Stores the local copes back to the range decoder structure. |
| #define rc_from_local(range_decoder, in_pos) \ |
| do { \ |
| range_decoder = rc; \ |
| in_pos = rc_in_pos; \ |
| } while (0) |
| |
| |
| /// Resets the range decoder structure. |
| #define rc_reset(range_decoder) \ |
| do { \ |
| (range_decoder).range = UINT32_MAX; \ |
| (range_decoder).code = 0; \ |
| (range_decoder).init_bytes_left = 5; \ |
| } while (0) |
| |
| |
| /// When decoding has been properly finished, rc.code is always zero unless |
| /// the input stream is corrupt. So checking this can catch some corrupt |
| /// files especially if they don't have any other integrity check. |
| #define rc_is_finished(range_decoder) \ |
| ((range_decoder).code == 0) |
| |
| |
| /// Read the next input byte if needed. If more input is needed but there is |
| /// no more input available, "goto out" is used to jump out of the main |
| /// decoder loop. |
| #define rc_normalize(seq) \ |
| do { \ |
| if (rc.range < RC_TOP_VALUE) { \ |
| if (unlikely(rc_in_pos == in_size)) { \ |
| coder->sequence = seq; \ |
| goto out; \ |
| } \ |
| rc.range <<= RC_SHIFT_BITS; \ |
| rc.code = (rc.code << RC_SHIFT_BITS) | in[rc_in_pos++]; \ |
| } \ |
| } while (0) |
| |
| |
| /// Start decoding a bit. This must be used together with rc_update_0() |
| /// and rc_update_1(): |
| /// |
| /// rc_if_0(prob, seq) { |
| /// rc_update_0(prob); |
| /// // Do something |
| /// } else { |
| /// rc_update_1(prob); |
| /// // Do something else |
| /// } |
| /// |
| #define rc_if_0(prob, seq) \ |
| rc_normalize(seq); \ |
| rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ |
| if (rc.code < rc_bound) |
| |
| |
| /// Update the range decoder state and the used probability variable to |
| /// match a decoded bit of 0. |
| #define rc_update_0(prob) \ |
| do { \ |
| rc.range = rc_bound; \ |
| prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ |
| } while (0) |
| |
| |
| /// Update the range decoder state and the used probability variable to |
| /// match a decoded bit of 1. |
| #define rc_update_1(prob) \ |
| do { \ |
| rc.range -= rc_bound; \ |
| rc.code -= rc_bound; \ |
| prob -= (prob) >> RC_MOVE_BITS; \ |
| } while (0) |
| |
| |
| /// Decodes one bit and runs action0 or action1 depending on the decoded bit. |
| /// This macro is used as the last step in bittree reverse decoders since |
| /// those don't use "symbol" for anything else than indexing the probability |
| /// arrays. |
| #define rc_bit_last(prob, action0, action1, seq) \ |
| do { \ |
| rc_if_0(prob, seq) { \ |
| rc_update_0(prob); \ |
| action0; \ |
| } else { \ |
| rc_update_1(prob); \ |
| action1; \ |
| } \ |
| } while (0) |
| |
| |
| /// Decodes one bit, updates "symbol", and runs action0 or action1 depending |
| /// on the decoded bit. |
| #define rc_bit(prob, action0, action1, seq) \ |
| rc_bit_last(prob, \ |
| symbol <<= 1; action0, \ |
| symbol = (symbol << 1) + 1; action1, \ |
| seq); |
| |
| |
| /// Like rc_bit() but add "case seq:" as a prefix. This makes the unrolled |
| /// loops more readable because the code isn't littered with "case" |
| /// statements. On the other hand this also makes it less readable, since |
| /// spotting the places where the decoder loop may be restarted is less |
| /// obvious. |
| #define rc_bit_case(prob, action0, action1, seq) \ |
| case seq: rc_bit(prob, action0, action1, seq) |
| |
| |
| /// Decode a bit without using a probability. |
| #define rc_direct(dest, seq) \ |
| do { \ |
| rc_normalize(seq); \ |
| rc.range >>= 1; \ |
| rc.code -= rc.range; \ |
| rc_bound = UINT32_C(0) - (rc.code >> 31); \ |
| rc.code += rc.range & rc_bound; \ |
| dest = (dest << 1) + (rc_bound + 1); \ |
| } while (0) |
| |
| |
| // NOTE: No macros are provided for bittree decoding. It seems to be simpler |
| // to just write them open in the code. |
| |
| #endif |