| /* |
| * FILE: sha2.c |
| * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/ |
| * |
| * Copyright (c) 2000-2001, Aaron D. Gifford |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the copyright holder nor the names of contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| |
| #include <string.h> |
| #include <assert.h> |
| #include "sha2.h" |
| |
| /* |
| * ASSERT NOTE: |
| * Some sanity checking code is included using assert(). On my FreeBSD |
| * system, this additional code can be removed by compiling with NDEBUG |
| * defined. Check your own systems manpage on assert() to see how to |
| * compile WITHOUT the sanity checking code on your system. |
| * |
| * UNROLLED TRANSFORM LOOP NOTE: |
| * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
| * loop version for the hash transform rounds (defined using macros |
| * later in this file). Either define on the command line, for example: |
| * |
| * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
| * |
| * or define below: |
| * |
| * #define SHA2_UNROLL_TRANSFORM |
| * |
| */ |
| |
| /*** SHA-256/384/512 Various Length Definitions ***********************/ |
| /* NOTE: Most of these are in sha2.h */ |
| #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
| #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
| #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
| |
| #define SHA2_WORD64_CONST(dw1, dw2) (((sha2_word64)(dw1) << 32) | (dw2)) |
| |
| /*** ENDIAN REVERSAL MACROS *******************************************/ |
| #ifndef WORDS_BIGENDIAN |
| #define REVERSE32(w,x) { \ |
| sha2_word32 tmp = (w); \ |
| tmp = (tmp >> 16) | (tmp << 16); \ |
| (x) = ((tmp & 0xff00ff00) >> 8) | ((tmp & 0x00ff00ff) << 8); \ |
| } |
| #define REVERSE64(w,x) { \ |
| sha2_word64 tmp = (w); \ |
| tmp = (tmp >> 32) | (tmp << 32); \ |
| tmp = ((tmp & SHA2_WORD64_CONST(0xff00ff00, 0xff00ff00)) >> 8) | \ |
| ((tmp & SHA2_WORD64_CONST(0x00ff00ff, 0x00ff00ff)) << 8); \ |
| (x) = ((tmp & SHA2_WORD64_CONST(0xffff0000, 0xffff0000)) >> 16) | \ |
| ((tmp & SHA2_WORD64_CONST(0x0000ffff, 0x0000ffff)) << 16); \ |
| } |
| #endif |
| |
| /* |
| * Macro for incrementally adding the unsigned 64-bit integer n to the |
| * unsigned 128-bit integer (represented using a two-element array of |
| * 64-bit words): |
| */ |
| #define ADDINC128(w,n) { \ |
| (w)[0] += (sha2_word64)(n); \ |
| if ((w)[0] < (n)) { \ |
| (w)[1]++; \ |
| } \ |
| } |
| |
| /* |
| * Macros for copying blocks of memory and for zeroing out ranges |
| * of memory. Using these macros makes it easy to switch from |
| * using memset()/memcpy() and using bzero()/bcopy(). |
| * |
| * Please define either SHA2_USE_MEMSET_MEMCPY or define |
| * SHA2_USE_BZERO_BCOPY depending on which function set you |
| * choose to use: |
| */ |
| #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) |
| /* Default to memset()/memcpy() if no option is specified */ |
| #define SHA2_USE_MEMSET_MEMCPY 1 |
| #endif |
| #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) |
| /* Abort with an error if BOTH options are defined */ |
| #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! |
| #endif |
| |
| #ifdef SHA2_USE_MEMSET_MEMCPY |
| #define MEMSET_BZERO(p,l) memset((p), 0, (l)) |
| #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) |
| #endif |
| #ifdef SHA2_USE_BZERO_BCOPY |
| #define MEMSET_BZERO(p,l) bzero((p), (l)) |
| #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) |
| #endif |
| |
| |
| /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
| /* |
| * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
| * |
| * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
| * S is a ROTATION) because the SHA-256/384/512 description document |
| * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
| * same "backwards" definition. |
| */ |
| /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
| #define R(b,x) ((x) >> (b)) |
| /* 32-bit Rotate-right (used in SHA-256): */ |
| #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
| /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
| #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
| |
| /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
| #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
| #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| |
| /* Four of six logical functions used in SHA-256: */ |
| #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
| #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
| #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
| #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
| |
| /* Four of six logical functions used in SHA-384 and SHA-512: */ |
| #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
| #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
| #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
| #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
| |
| /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
| /* NOTE: These should not be accessed directly from outside this |
| * library -- they are intended for private internal visibility/use |
| * only. |
| */ |
| void SHA512_Last(SHA512_CTX*); |
| void SHA256_Transform(SHA256_CTX*, const sha2_word32*); |
| void SHA512_Transform(SHA512_CTX*, const sha2_word64*); |
| |
| |
| /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
| /* Hash constant words K for SHA-256: */ |
| static const sha2_word32 K256[64] = { |
| 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
| 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
| 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
| 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
| 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
| 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
| 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
| 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
| 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
| 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
| 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
| 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
| 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
| 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
| 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
| 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
| }; |
| |
| /* Initial hash value H for SHA-256: */ |
| static const sha2_word32 sha256_initial_hash_value[8] = { |
| 0x6a09e667, |
| 0xbb67ae85, |
| 0x3c6ef372, |
| 0xa54ff53a, |
| 0x510e527f, |
| 0x9b05688c, |
| 0x1f83d9ab, |
| 0x5be0cd19 |
| }; |
| |
| /* Hash constant words K for SHA-384 and SHA-512: */ |
| static const sha2_word64 K512[80] = { |
| SHA2_WORD64_CONST(0x428a2f98, 0xd728ae22), SHA2_WORD64_CONST(0x71374491, 0x23ef65cd), |
| SHA2_WORD64_CONST(0xb5c0fbcf, 0xec4d3b2f), SHA2_WORD64_CONST(0xe9b5dba5, 0x8189dbbc), |
| SHA2_WORD64_CONST(0x3956c25b, 0xf348b538), SHA2_WORD64_CONST(0x59f111f1, 0xb605d019), |
| SHA2_WORD64_CONST(0x923f82a4, 0xaf194f9b), SHA2_WORD64_CONST(0xab1c5ed5, 0xda6d8118), |
| SHA2_WORD64_CONST(0xd807aa98, 0xa3030242), SHA2_WORD64_CONST(0x12835b01, 0x45706fbe), |
| SHA2_WORD64_CONST(0x243185be, 0x4ee4b28c), SHA2_WORD64_CONST(0x550c7dc3, 0xd5ffb4e2), |
| SHA2_WORD64_CONST(0x72be5d74, 0xf27b896f), SHA2_WORD64_CONST(0x80deb1fe, 0x3b1696b1), |
| SHA2_WORD64_CONST(0x9bdc06a7, 0x25c71235), SHA2_WORD64_CONST(0xc19bf174, 0xcf692694), |
| SHA2_WORD64_CONST(0xe49b69c1, 0x9ef14ad2), SHA2_WORD64_CONST(0xefbe4786, 0x384f25e3), |
| SHA2_WORD64_CONST(0x0fc19dc6, 0x8b8cd5b5), SHA2_WORD64_CONST(0x240ca1cc, 0x77ac9c65), |
| SHA2_WORD64_CONST(0x2de92c6f, 0x592b0275), SHA2_WORD64_CONST(0x4a7484aa, 0x6ea6e483), |
| SHA2_WORD64_CONST(0x5cb0a9dc, 0xbd41fbd4), SHA2_WORD64_CONST(0x76f988da, 0x831153b5), |
| SHA2_WORD64_CONST(0x983e5152, 0xee66dfab), SHA2_WORD64_CONST(0xa831c66d, 0x2db43210), |
| SHA2_WORD64_CONST(0xb00327c8, 0x98fb213f), SHA2_WORD64_CONST(0xbf597fc7, 0xbeef0ee4), |
| SHA2_WORD64_CONST(0xc6e00bf3, 0x3da88fc2), SHA2_WORD64_CONST(0xd5a79147, 0x930aa725), |
| SHA2_WORD64_CONST(0x06ca6351, 0xe003826f), SHA2_WORD64_CONST(0x14292967, 0x0a0e6e70), |
| SHA2_WORD64_CONST(0x27b70a85, 0x46d22ffc), SHA2_WORD64_CONST(0x2e1b2138, 0x5c26c926), |
| SHA2_WORD64_CONST(0x4d2c6dfc, 0x5ac42aed), SHA2_WORD64_CONST(0x53380d13, 0x9d95b3df), |
| SHA2_WORD64_CONST(0x650a7354, 0x8baf63de), SHA2_WORD64_CONST(0x766a0abb, 0x3c77b2a8), |
| SHA2_WORD64_CONST(0x81c2c92e, 0x47edaee6), SHA2_WORD64_CONST(0x92722c85, 0x1482353b), |
| SHA2_WORD64_CONST(0xa2bfe8a1, 0x4cf10364), SHA2_WORD64_CONST(0xa81a664b, 0xbc423001), |
| SHA2_WORD64_CONST(0xc24b8b70, 0xd0f89791), SHA2_WORD64_CONST(0xc76c51a3, 0x0654be30), |
| SHA2_WORD64_CONST(0xd192e819, 0xd6ef5218), SHA2_WORD64_CONST(0xd6990624, 0x5565a910), |
| SHA2_WORD64_CONST(0xf40e3585, 0x5771202a), SHA2_WORD64_CONST(0x106aa070, 0x32bbd1b8), |
| SHA2_WORD64_CONST(0x19a4c116, 0xb8d2d0c8), SHA2_WORD64_CONST(0x1e376c08, 0x5141ab53), |
| SHA2_WORD64_CONST(0x2748774c, 0xdf8eeb99), SHA2_WORD64_CONST(0x34b0bcb5, 0xe19b48a8), |
| SHA2_WORD64_CONST(0x391c0cb3, 0xc5c95a63), SHA2_WORD64_CONST(0x4ed8aa4a, 0xe3418acb), |
| SHA2_WORD64_CONST(0x5b9cca4f, 0x7763e373), SHA2_WORD64_CONST(0x682e6ff3, 0xd6b2b8a3), |
| SHA2_WORD64_CONST(0x748f82ee, 0x5defb2fc), SHA2_WORD64_CONST(0x78a5636f, 0x43172f60), |
| SHA2_WORD64_CONST(0x84c87814, 0xa1f0ab72), SHA2_WORD64_CONST(0x8cc70208, 0x1a6439ec), |
| SHA2_WORD64_CONST(0x90befffa, 0x23631e28), SHA2_WORD64_CONST(0xa4506ceb, 0xde82bde9), |
| SHA2_WORD64_CONST(0xbef9a3f7, 0xb2c67915), SHA2_WORD64_CONST(0xc67178f2, 0xe372532b), |
| SHA2_WORD64_CONST(0xca273ece, 0xea26619c), SHA2_WORD64_CONST(0xd186b8c7, 0x21c0c207), |
| SHA2_WORD64_CONST(0xeada7dd6, 0xcde0eb1e), SHA2_WORD64_CONST(0xf57d4f7f, 0xee6ed178), |
| SHA2_WORD64_CONST(0x06f067aa, 0x72176fba), SHA2_WORD64_CONST(0x0a637dc5, 0xa2c898a6), |
| SHA2_WORD64_CONST(0x113f9804, 0xbef90dae), SHA2_WORD64_CONST(0x1b710b35, 0x131c471b), |
| SHA2_WORD64_CONST(0x28db77f5, 0x23047d84), SHA2_WORD64_CONST(0x32caab7b, 0x40c72493), |
| SHA2_WORD64_CONST(0x3c9ebe0a, 0x15c9bebc), SHA2_WORD64_CONST(0x431d67c4, 0x9c100d4c), |
| SHA2_WORD64_CONST(0x4cc5d4be, 0xcb3e42b6), SHA2_WORD64_CONST(0x597f299c, 0xfc657e2a), |
| SHA2_WORD64_CONST(0x5fcb6fab, 0x3ad6faec), SHA2_WORD64_CONST(0x6c44198c, 0x4a475817) |
| }; |
| |
| /* Initial hash value H for SHA-384 */ |
| static const sha2_word64 sha384_initial_hash_value[8] = { |
| SHA2_WORD64_CONST(0xcbbb9d5d, 0xc1059ed8), |
| SHA2_WORD64_CONST(0x629a292a, 0x367cd507), |
| SHA2_WORD64_CONST(0x9159015a, 0x3070dd17), |
| SHA2_WORD64_CONST(0x152fecd8, 0xf70e5939), |
| SHA2_WORD64_CONST(0x67332667, 0xffc00b31), |
| SHA2_WORD64_CONST(0x8eb44a87, 0x68581511), |
| SHA2_WORD64_CONST(0xdb0c2e0d, 0x64f98fa7), |
| SHA2_WORD64_CONST(0x47b5481d, 0xbefa4fa4) |
| }; |
| |
| /* Initial hash value H for SHA-512 */ |
| static const sha2_word64 sha512_initial_hash_value[8] = { |
| SHA2_WORD64_CONST(0x6a09e667, 0xf3bcc908), |
| SHA2_WORD64_CONST(0xbb67ae85, 0x84caa73b), |
| SHA2_WORD64_CONST(0x3c6ef372, 0xfe94f82b), |
| SHA2_WORD64_CONST(0xa54ff53a, 0x5f1d36f1), |
| SHA2_WORD64_CONST(0x510e527f, 0xade682d1), |
| SHA2_WORD64_CONST(0x9b05688c, 0x2b3e6c1f), |
| SHA2_WORD64_CONST(0x1f83d9ab, 0xfb41bd6b), |
| SHA2_WORD64_CONST(0x5be0cd19, 0x137e2179) |
| }; |
| |
| /* |
| * Constant used by SHA256/384/512_End() functions for converting the |
| * digest to a readable hexadecimal character string: |
| */ |
| static const char sha2_hex_digits[] = "0123456789abcdef"; |
| |
| |
| /*** SHA-256: *********************************************************/ |
| void SHA256_Init(SHA256_CTX* context) { |
| if (context == NULL) { |
| return; |
| } |
| MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); |
| MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH); |
| context->bitcount = 0; |
| } |
| |
| #ifdef SHA2_UNROLL_TRANSFORM |
| |
| /* Unrolled SHA-256 round macros: */ |
| |
| #ifndef WORDS_BIGENDIAN |
| |
| #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
| REVERSE32(*data++, W256[j]); \ |
| T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ |
| K256[j] + W256[j]; \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
| j++ |
| |
| |
| #else |
| |
| #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
| T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ |
| K256[j] + (W256[j] = *data++); \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
| j++ |
| |
| #endif |
| |
| #define ROUND256(a,b,c,d,e,f,g,h) \ |
| s0 = W256[(j+1)&0x0f]; \ |
| s0 = sigma0_256(s0); \ |
| s1 = W256[(j+14)&0x0f]; \ |
| s1 = sigma1_256(s1); \ |
| T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ |
| (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
| j++ |
| |
| void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { |
| sha2_word32 a, b, c, d, e, f, g, h, s0, s1; |
| sha2_word32 T1, *W256; |
| int j; |
| |
| W256 = (sha2_word32*)context->buffer; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| a = context->state[0]; |
| b = context->state[1]; |
| c = context->state[2]; |
| d = context->state[3]; |
| e = context->state[4]; |
| f = context->state[5]; |
| g = context->state[6]; |
| h = context->state[7]; |
| |
| j = 0; |
| do { |
| /* Rounds 0 to 15 (unrolled): */ |
| ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
| ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
| ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
| ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
| ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
| ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
| ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
| ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
| } while (j < 16); |
| |
| /* Now for the remaining rounds to 64: */ |
| do { |
| ROUND256(a,b,c,d,e,f,g,h); |
| ROUND256(h,a,b,c,d,e,f,g); |
| ROUND256(g,h,a,b,c,d,e,f); |
| ROUND256(f,g,h,a,b,c,d,e); |
| ROUND256(e,f,g,h,a,b,c,d); |
| ROUND256(d,e,f,g,h,a,b,c); |
| ROUND256(c,d,e,f,g,h,a,b); |
| ROUND256(b,c,d,e,f,g,h,a); |
| } while (j < 64); |
| |
| /* Compute the current intermediate hash value */ |
| context->state[0] += a; |
| context->state[1] += b; |
| context->state[2] += c; |
| context->state[3] += d; |
| context->state[4] += e; |
| context->state[5] += f; |
| context->state[6] += g; |
| context->state[7] += h; |
| |
| /* Clean up */ |
| a = b = c = d = e = f = g = h = T1 = 0; |
| } |
| |
| #else /* SHA2_UNROLL_TRANSFORM */ |
| |
| void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { |
| sha2_word32 a, b, c, d, e, f, g, h, s0, s1; |
| sha2_word32 T1, T2, *W256; |
| int j; |
| |
| W256 = (sha2_word32*)context->buffer; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| a = context->state[0]; |
| b = context->state[1]; |
| c = context->state[2]; |
| d = context->state[3]; |
| e = context->state[4]; |
| f = context->state[5]; |
| g = context->state[6]; |
| h = context->state[7]; |
| |
| j = 0; |
| do { |
| #ifndef WORDS_BIGENDIAN |
| /* Copy data while converting to host byte order */ |
| REVERSE32(*data++,W256[j]); |
| /* Apply the SHA-256 compression function to update a..h */ |
| T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
| #else |
| /* Apply the SHA-256 compression function to update a..h with copy */ |
| T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); |
| #endif |
| T2 = Sigma0_256(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } while (j < 16); |
| |
| do { |
| /* Part of the message block expansion: */ |
| s0 = W256[(j+1)&0x0f]; |
| s0 = sigma0_256(s0); |
| s1 = W256[(j+14)&0x0f]; |
| s1 = sigma1_256(s1); |
| |
| /* Apply the SHA-256 compression function to update a..h */ |
| T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
| (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
| T2 = Sigma0_256(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } while (j < 64); |
| |
| /* Compute the current intermediate hash value */ |
| context->state[0] += a; |
| context->state[1] += b; |
| context->state[2] += c; |
| context->state[3] += d; |
| context->state[4] += e; |
| context->state[5] += f; |
| context->state[6] += g; |
| context->state[7] += h; |
| |
| /* Clean up */ |
| a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| } |
| |
| #endif /* SHA2_UNROLL_TRANSFORM */ |
| |
| void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { |
| unsigned int freespace, usedspace; |
| |
| if (len == 0) { |
| /* Calling with no data is valid - we do nothing */ |
| return; |
| } |
| |
| /* Sanity check: */ |
| assert(context != NULL && data != NULL); |
| |
| usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; |
| if (usedspace > 0) { |
| /* Calculate how much free space is available in the buffer */ |
| freespace = SHA256_BLOCK_LENGTH - usedspace; |
| |
| if (len >= freespace) { |
| /* Fill the buffer completely and process it */ |
| MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); |
| context->bitcount += freespace << 3; |
| len -= freespace; |
| data += freespace; |
| SHA256_Transform(context, (sha2_word32*)context->buffer); |
| } else { |
| /* The buffer is not yet full */ |
| MEMCPY_BCOPY(&context->buffer[usedspace], data, len); |
| context->bitcount += len << 3; |
| /* Clean up: */ |
| usedspace = freespace = 0; |
| return; |
| } |
| } |
| while (len >= SHA256_BLOCK_LENGTH) { |
| /* Process as many complete blocks as we can */ |
| SHA256_Transform(context, (const sha2_word32*)data); |
| context->bitcount += SHA256_BLOCK_LENGTH << 3; |
| len -= SHA256_BLOCK_LENGTH; |
| data += SHA256_BLOCK_LENGTH; |
| } |
| if (len > 0) { |
| /* There's left-overs, so save 'em */ |
| MEMCPY_BCOPY(context->buffer, data, len); |
| context->bitcount += len << 3; |
| } |
| /* Clean up: */ |
| usedspace = freespace = 0; |
| } |
| |
| void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) { |
| sha2_word32 *d = (sha2_word32*)digest; |
| unsigned int usedspace; |
| |
| /* Sanity check: */ |
| assert(context != NULL); |
| |
| /* If no digest buffer is passed, we don't bother doing this: */ |
| if (digest != NULL) { |
| usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; |
| #ifndef WORDS_BIGENDIAN |
| /* Convert FROM host byte order */ |
| REVERSE64(context->bitcount,context->bitcount); |
| #endif |
| if (usedspace > 0) { |
| /* Begin padding with a 1 bit: */ |
| context->buffer[usedspace++] = 0x80; |
| |
| if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { |
| /* Set-up for the last transform: */ |
| MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); |
| } else { |
| if (usedspace < SHA256_BLOCK_LENGTH) { |
| MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); |
| } |
| /* Do second-to-last transform: */ |
| SHA256_Transform(context, (sha2_word32*)context->buffer); |
| |
| /* And set-up for the last transform: */ |
| MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); |
| } |
| } else { |
| /* Set-up for the last transform: */ |
| MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); |
| |
| /* Begin padding with a 1 bit: */ |
| *context->buffer = 0x80; |
| } |
| /* Set the bit count: */ |
| *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; |
| |
| /* Final transform: */ |
| SHA256_Transform(context, (sha2_word32*)context->buffer); |
| |
| #ifndef WORDS_BIGENDIAN |
| { |
| /* Convert TO host byte order */ |
| int j; |
| for (j = 0; j < 8; j++) { |
| REVERSE32(context->state[j],context->state[j]); |
| *d++ = context->state[j]; |
| } |
| } |
| #else |
| MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH); |
| #endif |
| } |
| |
| /* Clean up state data: */ |
| MEMSET_BZERO(context, sizeof(*context)); |
| usedspace = 0; |
| } |
| |
| char *SHA256_End(SHA256_CTX* context, char buffer[]) { |
| sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest; |
| int i; |
| |
| /* Sanity check: */ |
| assert(context != NULL); |
| |
| if (buffer != NULL) { |
| SHA256_Final(digest, context); |
| |
| for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { |
| *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
| *buffer++ = sha2_hex_digits[*d & 0x0f]; |
| d++; |
| } |
| *buffer = 0; |
| } else { |
| MEMSET_BZERO(context, sizeof(*context)); |
| } |
| MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH); |
| return buffer; |
| } |
| |
| char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { |
| SHA256_CTX context; |
| |
| SHA256_Init(&context); |
| SHA256_Update(&context, data, len); |
| return SHA256_End(&context, digest); |
| } |
| |
| |
| /*** SHA-512: *********************************************************/ |
| void SHA512_Init(SHA512_CTX* context) { |
| if (context == NULL) { |
| return; |
| } |
| MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); |
| MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH); |
| context->bitcount[0] = context->bitcount[1] = 0; |
| } |
| |
| #ifdef SHA2_UNROLL_TRANSFORM |
| |
| /* Unrolled SHA-512 round macros: */ |
| #ifndef WORDS_BIGENDIAN |
| |
| #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
| REVERSE64(*data++, W512[j]); \ |
| T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ |
| K512[j] + W512[j]; \ |
| (d) += T1, \ |
| (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ |
| j++ |
| |
| |
| #else |
| |
| #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
| T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ |
| K512[j] + (W512[j] = *data++); \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ |
| j++ |
| |
| #endif |
| |
| #define ROUND512(a,b,c,d,e,f,g,h) \ |
| s0 = W512[(j+1)&0x0f]; \ |
| s0 = sigma0_512(s0); \ |
| s1 = W512[(j+14)&0x0f]; \ |
| s1 = sigma1_512(s1); \ |
| T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ |
| (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ |
| j++ |
| |
| void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { |
| sha2_word64 a, b, c, d, e, f, g, h, s0, s1; |
| sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| a = context->state[0]; |
| b = context->state[1]; |
| c = context->state[2]; |
| d = context->state[3]; |
| e = context->state[4]; |
| f = context->state[5]; |
| g = context->state[6]; |
| h = context->state[7]; |
| |
| j = 0; |
| do { |
| ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
| ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
| ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
| ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
| ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
| ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
| ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
| ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
| } while (j < 16); |
| |
| /* Now for the remaining rounds up to 79: */ |
| do { |
| ROUND512(a,b,c,d,e,f,g,h); |
| ROUND512(h,a,b,c,d,e,f,g); |
| ROUND512(g,h,a,b,c,d,e,f); |
| ROUND512(f,g,h,a,b,c,d,e); |
| ROUND512(e,f,g,h,a,b,c,d); |
| ROUND512(d,e,f,g,h,a,b,c); |
| ROUND512(c,d,e,f,g,h,a,b); |
| ROUND512(b,c,d,e,f,g,h,a); |
| } while (j < 80); |
| |
| /* Compute the current intermediate hash value */ |
| context->state[0] += a; |
| context->state[1] += b; |
| context->state[2] += c; |
| context->state[3] += d; |
| context->state[4] += e; |
| context->state[5] += f; |
| context->state[6] += g; |
| context->state[7] += h; |
| |
| /* Clean up */ |
| a = b = c = d = e = f = g = h = T1 = 0; |
| } |
| |
| #else /* SHA2_UNROLL_TRANSFORM */ |
| |
| void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { |
| sha2_word64 a, b, c, d, e, f, g, h, s0, s1; |
| sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| a = context->state[0]; |
| b = context->state[1]; |
| c = context->state[2]; |
| d = context->state[3]; |
| e = context->state[4]; |
| f = context->state[5]; |
| g = context->state[6]; |
| h = context->state[7]; |
| |
| j = 0; |
| do { |
| #ifndef WORDS_BIGENDIAN |
| /* Convert TO host byte order */ |
| REVERSE64(*data++, W512[j]); |
| /* Apply the SHA-512 compression function to update a..h */ |
| T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; |
| #else |
| /* Apply the SHA-512 compression function to update a..h with copy */ |
| T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); |
| #endif |
| T2 = Sigma0_512(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } while (j < 16); |
| |
| do { |
| /* Part of the message block expansion: */ |
| s0 = W512[(j+1)&0x0f]; |
| s0 = sigma0_512(s0); |
| s1 = W512[(j+14)&0x0f]; |
| s1 = sigma1_512(s1); |
| |
| /* Apply the SHA-512 compression function to update a..h */ |
| T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + |
| (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
| T2 = Sigma0_512(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } while (j < 80); |
| |
| /* Compute the current intermediate hash value */ |
| context->state[0] += a; |
| context->state[1] += b; |
| context->state[2] += c; |
| context->state[3] += d; |
| context->state[4] += e; |
| context->state[5] += f; |
| context->state[6] += g; |
| context->state[7] += h; |
| |
| /* Clean up */ |
| a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| } |
| |
| #endif /* SHA2_UNROLL_TRANSFORM */ |
| |
| void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { |
| unsigned int freespace, usedspace; |
| |
| if (len == 0) { |
| /* Calling with no data is valid - we do nothing */ |
| return; |
| } |
| |
| /* Sanity check: */ |
| assert(context != NULL && data != NULL); |
| |
| usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
| if (usedspace > 0) { |
| /* Calculate how much free space is available in the buffer */ |
| freespace = SHA512_BLOCK_LENGTH - usedspace; |
| |
| if (len >= freespace) { |
| /* Fill the buffer completely and process it */ |
| MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); |
| ADDINC128(context->bitcount, freespace << 3); |
| len -= freespace; |
| data += freespace; |
| SHA512_Transform(context, (sha2_word64*)context->buffer); |
| } else { |
| /* The buffer is not yet full */ |
| MEMCPY_BCOPY(&context->buffer[usedspace], data, len); |
| ADDINC128(context->bitcount, len << 3); |
| /* Clean up: */ |
| usedspace = freespace = 0; |
| return; |
| } |
| } |
| while (len >= SHA512_BLOCK_LENGTH) { |
| /* Process as many complete blocks as we can */ |
| SHA512_Transform(context, (const sha2_word64*)data); |
| ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
| len -= SHA512_BLOCK_LENGTH; |
| data += SHA512_BLOCK_LENGTH; |
| } |
| if (len > 0) { |
| /* There's left-overs, so save 'em */ |
| MEMCPY_BCOPY(context->buffer, data, len); |
| ADDINC128(context->bitcount, len << 3); |
| } |
| /* Clean up: */ |
| usedspace = freespace = 0; |
| } |
| |
| void SHA512_Last(SHA512_CTX* context) { |
| unsigned int usedspace; |
| |
| usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
| #ifndef WORDS_BIGENDIAN |
| /* Convert FROM host byte order */ |
| REVERSE64(context->bitcount[0],context->bitcount[0]); |
| REVERSE64(context->bitcount[1],context->bitcount[1]); |
| #endif |
| if (usedspace > 0) { |
| /* Begin padding with a 1 bit: */ |
| context->buffer[usedspace++] = 0x80; |
| |
| if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { |
| /* Set-up for the last transform: */ |
| MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); |
| } else { |
| if (usedspace < SHA512_BLOCK_LENGTH) { |
| MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); |
| } |
| /* Do second-to-last transform: */ |
| SHA512_Transform(context, (sha2_word64*)context->buffer); |
| |
| /* And set-up for the last transform: */ |
| MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2); |
| } |
| } else { |
| /* Prepare for final transform: */ |
| MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH); |
| |
| /* Begin padding with a 1 bit: */ |
| *context->buffer = 0x80; |
| } |
| /* Store the length of input data (in bits): */ |
| *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; |
| *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0]; |
| |
| /* Final transform: */ |
| SHA512_Transform(context, (sha2_word64*)context->buffer); |
| } |
| |
| void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { |
| sha2_word64 *d = (sha2_word64*)digest; |
| |
| /* Sanity check: */ |
| assert(context != NULL); |
| |
| /* If no digest buffer is passed, we don't bother doing this: */ |
| if (digest != NULL) { |
| SHA512_Last(context); |
| |
| /* Save the hash data for output: */ |
| #ifndef WORDS_BIGENDIAN |
| { |
| /* Convert TO host byte order */ |
| int j; |
| for (j = 0; j < 8; j++) { |
| REVERSE64(context->state[j],context->state[j]); |
| *d++ = context->state[j]; |
| } |
| } |
| #else |
| MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH); |
| #endif |
| } |
| |
| /* Zero out state data */ |
| MEMSET_BZERO(context, sizeof(*context)); |
| } |
| |
| char *SHA512_End(SHA512_CTX* context, char buffer[]) { |
| sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest; |
| int i; |
| |
| /* Sanity check: */ |
| assert(context != NULL); |
| |
| if (buffer != NULL) { |
| SHA512_Final(digest, context); |
| |
| for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { |
| *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
| *buffer++ = sha2_hex_digits[*d & 0x0f]; |
| d++; |
| } |
| *buffer = 0; |
| } else { |
| MEMSET_BZERO(context, sizeof(*context)); |
| } |
| MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH); |
| return buffer; |
| } |
| |
| char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { |
| SHA512_CTX context; |
| |
| SHA512_Init(&context); |
| SHA512_Update(&context, data, len); |
| return SHA512_End(&context, digest); |
| } |
| |
| |
| /*** SHA-384: *********************************************************/ |
| void SHA384_Init(SHA384_CTX* context) { |
| if (context == NULL) { |
| return; |
| } |
| MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); |
| MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH); |
| context->bitcount[0] = context->bitcount[1] = 0; |
| } |
| |
| void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { |
| SHA512_Update((SHA512_CTX*)context, data, len); |
| } |
| |
| void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) { |
| sha2_word64 *d = (sha2_word64*)digest; |
| |
| /* Sanity check: */ |
| assert(context != NULL); |
| |
| /* If no digest buffer is passed, we don't bother doing this: */ |
| if (digest != NULL) { |
| SHA512_Last((SHA512_CTX*)context); |
| |
| /* Save the hash data for output: */ |
| #ifndef WORDS_BIGENDIAN |
| { |
| /* Convert TO host byte order */ |
| int j; |
| for (j = 0; j < 6; j++) { |
| REVERSE64(context->state[j],context->state[j]); |
| *d++ = context->state[j]; |
| } |
| } |
| #else |
| MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH); |
| #endif |
| } |
| |
| /* Zero out state data */ |
| MEMSET_BZERO(context, sizeof(*context)); |
| } |
| |
| char *SHA384_End(SHA384_CTX* context, char buffer[]) { |
| sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest; |
| int i; |
| |
| /* Sanity check: */ |
| assert(context != NULL); |
| |
| if (buffer != NULL) { |
| SHA384_Final(digest, context); |
| |
| for (i = 0; i < SHA384_DIGEST_LENGTH; i++) { |
| *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; |
| *buffer++ = sha2_hex_digits[*d & 0x0f]; |
| d++; |
| } |
| *buffer = 0; |
| } else { |
| MEMSET_BZERO(context, sizeof(*context)); |
| } |
| MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH); |
| return buffer; |
| } |
| |
| char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) { |
| SHA384_CTX context; |
| |
| SHA384_Init(&context); |
| SHA384_Update(&context, data, len); |
| return SHA384_End(&context, digest); |
| } |