| /* |
| * dlls/rsaenh/rsaenh.c |
| * RSAENH - RSA encryption for Wine |
| * |
| * Copyright 2002 TransGaming Technologies (David Hammerton) |
| * Copyright 2004 Mike McCormack for CodeWeavers |
| * Copyright 2004, 2005 Michael Jung |
| * Copyright 2007 Vijay Kiran Kamuju |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA |
| */ |
| |
| #include "config.h" |
| #include "wine/port.h" |
| #include "wine/library.h" |
| #include "wine/debug.h" |
| |
| #include <stdarg.h> |
| #include <stdio.h> |
| |
| #include "windef.h" |
| #include "winbase.h" |
| #include "winreg.h" |
| #include "wincrypt.h" |
| #include "handle.h" |
| #include "implglue.h" |
| #include "objbase.h" |
| #include "rpcproxy.h" |
| #include "aclapi.h" |
| |
| WINE_DEFAULT_DEBUG_CHANNEL(crypt); |
| |
| static HINSTANCE instance; |
| |
| /****************************************************************************** |
| * CRYPTHASH - hash objects |
| */ |
| #define RSAENH_MAGIC_HASH 0x85938417u |
| #define RSAENH_HASHSTATE_HASHING 1 |
| #define RSAENH_HASHSTATE_FINISHED 2 |
| typedef struct _RSAENH_TLS1PRF_PARAMS |
| { |
| CRYPT_DATA_BLOB blobLabel; |
| CRYPT_DATA_BLOB blobSeed; |
| } RSAENH_TLS1PRF_PARAMS; |
| |
| typedef struct tagCRYPTHASH |
| { |
| OBJECTHDR header; |
| ALG_ID aiAlgid; |
| HCRYPTKEY hKey; |
| HCRYPTPROV hProv; |
| DWORD dwHashSize; |
| DWORD dwState; |
| HASH_CONTEXT context; |
| BYTE abHashValue[RSAENH_MAX_HASH_SIZE]; |
| PHMAC_INFO pHMACInfo; |
| RSAENH_TLS1PRF_PARAMS tpPRFParams; |
| } CRYPTHASH; |
| |
| /****************************************************************************** |
| * CRYPTKEY - key objects |
| */ |
| #define RSAENH_MAGIC_KEY 0x73620457u |
| #define RSAENH_MAX_KEY_SIZE 64 |
| #define RSAENH_MAX_BLOCK_SIZE 24 |
| #define RSAENH_KEYSTATE_IDLE 0 |
| #define RSAENH_KEYSTATE_ENCRYPTING 1 |
| #define RSAENH_KEYSTATE_MASTERKEY 2 |
| typedef struct _RSAENH_SCHANNEL_INFO |
| { |
| SCHANNEL_ALG saEncAlg; |
| SCHANNEL_ALG saMACAlg; |
| CRYPT_DATA_BLOB blobClientRandom; |
| CRYPT_DATA_BLOB blobServerRandom; |
| } RSAENH_SCHANNEL_INFO; |
| |
| typedef struct tagCRYPTKEY |
| { |
| OBJECTHDR header; |
| ALG_ID aiAlgid; |
| HCRYPTPROV hProv; |
| DWORD dwMode; |
| DWORD dwModeBits; |
| DWORD dwPermissions; |
| DWORD dwKeyLen; |
| DWORD dwEffectiveKeyLen; |
| DWORD dwSaltLen; |
| DWORD dwBlockLen; |
| DWORD dwState; |
| KEY_CONTEXT context; |
| BYTE abKeyValue[RSAENH_MAX_KEY_SIZE]; |
| BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE]; |
| BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE]; |
| RSAENH_SCHANNEL_INFO siSChannelInfo; |
| CRYPT_DATA_BLOB blobHmacKey; |
| } CRYPTKEY; |
| |
| /****************************************************************************** |
| * KEYCONTAINER - key containers |
| */ |
| #define RSAENH_PERSONALITY_BASE 0u |
| #define RSAENH_PERSONALITY_STRONG 1u |
| #define RSAENH_PERSONALITY_ENHANCED 2u |
| #define RSAENH_PERSONALITY_SCHANNEL 3u |
| #define RSAENH_PERSONALITY_AES 4u |
| |
| #define RSAENH_MAGIC_CONTAINER 0x26384993u |
| typedef struct tagKEYCONTAINER |
| { |
| OBJECTHDR header; |
| DWORD dwFlags; |
| DWORD dwPersonality; |
| DWORD dwEnumAlgsCtr; |
| DWORD dwEnumContainersCtr; |
| CHAR szName[MAX_PATH]; |
| CHAR szProvName[MAX_PATH]; |
| HCRYPTKEY hKeyExchangeKeyPair; |
| HCRYPTKEY hSignatureKeyPair; |
| } KEYCONTAINER; |
| |
| /****************************************************************************** |
| * Some magic constants |
| */ |
| #define RSAENH_ENCRYPT 1 |
| #define RSAENH_DECRYPT 0 |
| #define RSAENH_HMAC_DEF_IPAD_CHAR 0x36 |
| #define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c |
| #define RSAENH_HMAC_DEF_PAD_LEN 64 |
| #define RSAENH_HMAC_BLOCK_LEN 64 |
| #define RSAENH_DES_EFFECTIVE_KEYLEN 56 |
| #define RSAENH_DES_STORAGE_KEYLEN 64 |
| #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112 |
| #define RSAENH_3DES112_STORAGE_KEYLEN 128 |
| #define RSAENH_3DES_EFFECTIVE_KEYLEN 168 |
| #define RSAENH_3DES_STORAGE_KEYLEN 192 |
| #define RSAENH_MAGIC_RSA2 0x32415352 |
| #define RSAENH_MAGIC_RSA1 0x31415352 |
| #define RSAENH_PKC_BLOCKTYPE 0x02 |
| #define RSAENH_SSL3_VERSION_MAJOR 3 |
| #define RSAENH_SSL3_VERSION_MINOR 0 |
| #define RSAENH_TLS1_VERSION_MAJOR 3 |
| #define RSAENH_TLS1_VERSION_MINOR 1 |
| #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s" |
| |
| #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b)) |
| /****************************************************************************** |
| * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities. |
| */ |
| #define RSAENH_MAX_ENUMALGS 24 |
| #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1) |
| #define S(s) sizeof(s), s |
| static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] = |
| { |
| { |
| {CALG_RC2, 40, 40, 56, 0, S("RC2"), S("RSA Data Security's RC2")}, |
| {CALG_RC4, 40, 40, 56, 0, S("RC4"), S("RSA Data Security's RC4")}, |
| {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")}, |
| {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, |
| {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")}, |
| {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")}, |
| {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")}, |
| {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, |
| {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, |
| {CALG_RSA_SIGN, 512, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")}, |
| {CALG_RSA_KEYX, 512, 384, 1024, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")}, |
| {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, |
| {0, 0, 0, 0, 0, S(""), S("")} |
| }, |
| { |
| {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")}, |
| {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")}, |
| {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")}, |
| {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")}, |
| {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")}, |
| {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, |
| {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")}, |
| {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")}, |
| {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")}, |
| {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, |
| {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, |
| {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")}, |
| {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")}, |
| {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, |
| {0, 0, 0, 0, 0, S(""), S("")} |
| }, |
| { |
| {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")}, |
| {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")}, |
| {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")}, |
| {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")}, |
| {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")}, |
| {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, |
| {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")}, |
| {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")}, |
| {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")}, |
| {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, |
| {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, |
| {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")}, |
| {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")}, |
| {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, |
| {0, 0, 0, 0, 0, S(""), S("")} |
| }, |
| { |
| {CALG_RC2, 128, 40, 128, RSAENH_PCT1_SSL2_SSL3_TLS1, S("RC2"), S("RSA Data Security's RC2")}, |
| {CALG_RC4, 128, 40, 128, RSAENH_PCT1_SSL2_SSL3_TLS1, S("RC4"), S("RSA Data Security's RC4")}, |
| {CALG_DES, 56, 56, 56, RSAENH_PCT1_SSL2_SSL3_TLS1, S("DES"), S("Data Encryption Standard (DES)")}, |
| {CALG_3DES_112, 112, 112, 112, RSAENH_PCT1_SSL2_SSL3_TLS1, S("3DES TWO KEY"), S("Two Key Triple DES")}, |
| {CALG_3DES, 168, 168, 168, RSAENH_PCT1_SSL2_SSL3_TLS1, S("3DES"), S("Three Key Triple DES")}, |
| {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, |
| {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("MD5"), S("Message Digest 5 (MD5)")}, |
| {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, |
| {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, |
| {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("RSA_SIGN"), S("RSA Signature")}, |
| {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("RSA_KEYX"), S("RSA Key Exchange")}, |
| {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, |
| {CALG_PCT1_MASTER, 128, 128, 128, CRYPT_FLAG_PCT1, S("PCT1 MASTER"), S("PCT1 Master")}, |
| {CALG_SSL2_MASTER, 40, 40, 192, CRYPT_FLAG_SSL2, S("SSL2 MASTER"), S("SSL2 Master")}, |
| {CALG_SSL3_MASTER, 384, 384, 384, CRYPT_FLAG_SSL3, S("SSL3 MASTER"), S("SSL3 Master")}, |
| {CALG_TLS1_MASTER, 384, 384, 384, CRYPT_FLAG_TLS1, S("TLS1 MASTER"), S("TLS1 Master")}, |
| {CALG_SCHANNEL_MASTER_HASH, 0, 0, -1, 0, S("SCH MASTER HASH"), S("SChannel Master Hash")}, |
| {CALG_SCHANNEL_MAC_KEY, 0, 0, -1, 0, S("SCH MAC KEY"), S("SChannel MAC Key")}, |
| {CALG_SCHANNEL_ENC_KEY, 0, 0, -1, 0, S("SCH ENC KEY"), S("SChannel Encryption Key")}, |
| {CALG_TLS1PRF, 0, 0, -1, 0, S("TLS1 PRF"), S("TLS1 Pseudo Random Function")}, |
| {0, 0, 0, 0, 0, S(""), S("")} |
| }, |
| { |
| {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")}, |
| {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")}, |
| {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")}, |
| {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")}, |
| {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")}, |
| {CALG_AES, 128, 128, 128, 0, S("AES"), S("Advanced Encryption Standard (AES)")}, |
| {CALG_AES_128, 128, 128, 128, 0, S("AES-128"), S("Advanced Encryption Standard (AES-128)")}, |
| {CALG_AES_192, 192, 192, 192, 0, S("AES-192"), S("Advanced Encryption Standard (AES-192)")}, |
| {CALG_AES_256, 256, 256, 256, 0, S("AES-256"), S("Advanced Encryption Standard (AES-256)")}, |
| {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, |
| {CALG_SHA_256, 256, 256, 256, CRYPT_FLAG_SIGNING, S("SHA-256"), S("Secure Hash Algorithm (SHA-256)")}, |
| {CALG_SHA_384, 384, 384, 384, CRYPT_FLAG_SIGNING, S("SHA-384"), S("Secure Hash Algorithm (SHA-384)")}, |
| {CALG_SHA_512, 512, 512, 512, CRYPT_FLAG_SIGNING, S("SHA-512"), S("Secure Hash Algorithm (SHA-512)")}, |
| {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")}, |
| {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")}, |
| {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")}, |
| {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, |
| {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, |
| {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")}, |
| {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")}, |
| {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, |
| {0, 0, 0, 0, 0, S(""), S("")} |
| } |
| }; |
| #undef S |
| |
| /****************************************************************************** |
| * API forward declarations |
| */ |
| BOOL WINAPI |
| RSAENH_CPGetKeyParam( |
| HCRYPTPROV hProv, |
| HCRYPTKEY hKey, |
| DWORD dwParam, |
| BYTE *pbData, |
| DWORD *pdwDataLen, |
| DWORD dwFlags |
| ); |
| |
| BOOL WINAPI |
| RSAENH_CPEncrypt( |
| HCRYPTPROV hProv, |
| HCRYPTKEY hKey, |
| HCRYPTHASH hHash, |
| BOOL Final, |
| DWORD dwFlags, |
| BYTE *pbData, |
| DWORD *pdwDataLen, |
| DWORD dwBufLen |
| ); |
| |
| BOOL WINAPI |
| RSAENH_CPCreateHash( |
| HCRYPTPROV hProv, |
| ALG_ID Algid, |
| HCRYPTKEY hKey, |
| DWORD dwFlags, |
| HCRYPTHASH *phHash |
| ); |
| |
| BOOL WINAPI |
| RSAENH_CPSetHashParam( |
| HCRYPTPROV hProv, |
| HCRYPTHASH hHash, |
| DWORD dwParam, |
| BYTE *pbData, DWORD dwFlags |
| ); |
| |
| BOOL WINAPI |
| RSAENH_CPGetHashParam( |
| HCRYPTPROV hProv, |
| HCRYPTHASH hHash, |
| DWORD dwParam, |
| BYTE *pbData, |
| DWORD *pdwDataLen, |
| DWORD dwFlags |
| ); |
| |
| BOOL WINAPI |
| RSAENH_CPDestroyHash( |
| HCRYPTPROV hProv, |
| HCRYPTHASH hHash |
| ); |
| |
| static BOOL crypt_export_key( |
| CRYPTKEY *pCryptKey, |
| HCRYPTKEY hPubKey, |
| DWORD dwBlobType, |
| DWORD dwFlags, |
| BOOL force, |
| BYTE *pbData, |
| DWORD *pdwDataLen |
| ); |
| |
| static BOOL import_key( |
| HCRYPTPROV hProv, |
| const BYTE *pbData, |
| DWORD dwDataLen, |
| HCRYPTKEY hPubKey, |
| DWORD dwFlags, |
| BOOL fStoreKey, |
| HCRYPTKEY *phKey |
| ); |
| |
| BOOL WINAPI |
| RSAENH_CPHashData( |
| HCRYPTPROV hProv, |
| HCRYPTHASH hHash, |
| const BYTE *pbData, |
| DWORD dwDataLen, |
| DWORD dwFlags |
| ); |
| |
| /****************************************************************************** |
| * CSP's handle table (used by all acquired key containers) |
| */ |
| static struct handle_table handle_table; |
| |
| /****************************************************************************** |
| * DllMain (RSAENH.@) |
| * |
| * Initializes and destroys the handle table for the CSP's handles. |
| */ |
| BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID reserved) |
| { |
| switch (fdwReason) |
| { |
| case DLL_PROCESS_ATTACH: |
| instance = hInstance; |
| DisableThreadLibraryCalls(hInstance); |
| init_handle_table(&handle_table); |
| break; |
| |
| case DLL_PROCESS_DETACH: |
| if (reserved) break; |
| destroy_handle_table(&handle_table); |
| break; |
| } |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * copy_param [Internal] |
| * |
| * Helper function that supports the standard WINAPI protocol for querying data |
| * of dynamic size. |
| * |
| * PARAMS |
| * pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough. |
| * May be NUL if the required buffer size is to be queried only. |
| * pdwBufferSize [I/O] In: Size of the buffer at pbBuffer |
| * Out: Size of parameter pbParam |
| * pbParam [I] Parameter value. |
| * dwParamSize [I] Size of pbParam |
| * |
| * RETURN |
| * Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL) |
| * Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA |
| */ |
| static inline BOOL copy_param(BYTE *pbBuffer, DWORD *pdwBufferSize, const BYTE *pbParam, |
| DWORD dwParamSize) |
| { |
| if (pbBuffer) |
| { |
| if (dwParamSize > *pdwBufferSize) |
| { |
| SetLastError(ERROR_MORE_DATA); |
| *pdwBufferSize = dwParamSize; |
| return FALSE; |
| } |
| memcpy(pbBuffer, pbParam, dwParamSize); |
| } |
| *pdwBufferSize = dwParamSize; |
| return TRUE; |
| } |
| |
| static inline KEYCONTAINER* get_key_container(HCRYPTPROV hProv) |
| { |
| KEYCONTAINER *pKeyContainer; |
| |
| if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, |
| (OBJECTHDR**)&pKeyContainer)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return NULL; |
| } |
| return pKeyContainer; |
| } |
| |
| /****************************************************************************** |
| * get_algid_info [Internal] |
| * |
| * Query CSP capabilities for a given crypto algorithm. |
| * |
| * PARAMS |
| * hProv [I] Handle to a key container of the CSP whose capabilities are to be queried. |
| * algid [I] Identifier of the crypto algorithm about which information is requested. |
| * |
| * RETURNS |
| * Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm. |
| * Failure: NULL (algid not supported) |
| */ |
| static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) { |
| const PROV_ENUMALGS_EX *iterator; |
| KEYCONTAINER *pKeyContainer; |
| |
| if (!(pKeyContainer = get_key_container(hProv))) return NULL; |
| |
| for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) { |
| if (iterator->aiAlgid == algid) return iterator; |
| } |
| |
| SetLastError(NTE_BAD_ALGID); |
| return NULL; |
| } |
| |
| /****************************************************************************** |
| * copy_data_blob [Internal] |
| * |
| * deeply copies a DATA_BLOB |
| * |
| * PARAMS |
| * dst [O] That's where the blob will be copied to |
| * src [I] Source blob |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE (GetLastError() == NTE_NO_MEMORY |
| * |
| * NOTES |
| * Use free_data_blob to release resources occupied by copy_data_blob. |
| */ |
| static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src) |
| { |
| dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData); |
| if (!dst->pbData) { |
| SetLastError(NTE_NO_MEMORY); |
| return FALSE; |
| } |
| dst->cbData = src->cbData; |
| memcpy(dst->pbData, src->pbData, src->cbData); |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * concat_data_blobs [Internal] |
| * |
| * Concatenates two blobs |
| * |
| * PARAMS |
| * dst [O] The new blob will be copied here |
| * src1 [I] Prefix blob |
| * src2 [I] Appendix blob |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE (GetLastError() == NTE_NO_MEMORY) |
| * |
| * NOTES |
| * Release resources occupied by concat_data_blobs with free_data_blobs |
| */ |
| static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src1, |
| const PCRYPT_DATA_BLOB src2) |
| { |
| dst->cbData = src1->cbData + src2->cbData; |
| dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData); |
| if (!dst->pbData) { |
| SetLastError(NTE_NO_MEMORY); |
| return FALSE; |
| } |
| memcpy(dst->pbData, src1->pbData, src1->cbData); |
| memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData); |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * free_data_blob [Internal] |
| * |
| * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB |
| * |
| * PARAMS |
| * pBlob [I] Heap space occupied by pBlob->pbData is released |
| */ |
| static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) { |
| HeapFree(GetProcessHeap(), 0, pBlob->pbData); |
| } |
| |
| /****************************************************************************** |
| * init_data_blob [Internal] |
| */ |
| static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) { |
| pBlob->pbData = NULL; |
| pBlob->cbData = 0; |
| } |
| |
| /****************************************************************************** |
| * free_hmac_info [Internal] |
| * |
| * Deeply free an HMAC_INFO struct. |
| * |
| * PARAMS |
| * hmac_info [I] Pointer to the HMAC_INFO struct to be freed. |
| * |
| * NOTES |
| * See Internet RFC 2104 for details on the HMAC algorithm. |
| */ |
| static inline void free_hmac_info(PHMAC_INFO hmac_info) { |
| if (!hmac_info) return; |
| HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString); |
| HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString); |
| HeapFree(GetProcessHeap(), 0, hmac_info); |
| } |
| |
| /****************************************************************************** |
| * copy_hmac_info [Internal] |
| * |
| * Deeply copy an HMAC_INFO struct |
| * |
| * PARAMS |
| * dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored. |
| * src [I] Pointer to the HMAC_INFO struct to be copied. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| * |
| * NOTES |
| * See Internet RFC 2104 for details on the HMAC algorithm. |
| */ |
| static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) { |
| if (!src) return FALSE; |
| *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO)); |
| if (!*dst) return FALSE; |
| **dst = *src; |
| (*dst)->pbInnerString = NULL; |
| (*dst)->pbOuterString = NULL; |
| if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN; |
| (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString); |
| if (!(*dst)->pbInnerString) { |
| free_hmac_info(*dst); |
| return FALSE; |
| } |
| if (src->cbInnerString) |
| memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString); |
| else |
| memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN); |
| if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN; |
| (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString); |
| if (!(*dst)->pbOuterString) { |
| free_hmac_info(*dst); |
| return FALSE; |
| } |
| if (src->cbOuterString) |
| memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString); |
| else |
| memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN); |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * destroy_hash [Internal] |
| * |
| * Destructor for hash objects |
| * |
| * PARAMS |
| * pCryptHash [I] Pointer to the hash object to be destroyed. |
| * Will be invalid after function returns! |
| */ |
| static void destroy_hash(OBJECTHDR *pObject) |
| { |
| CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject; |
| |
| free_hmac_info(pCryptHash->pHMACInfo); |
| free_data_blob(&pCryptHash->tpPRFParams.blobLabel); |
| free_data_blob(&pCryptHash->tpPRFParams.blobSeed); |
| HeapFree(GetProcessHeap(), 0, pCryptHash); |
| } |
| |
| /****************************************************************************** |
| * init_hash [Internal] |
| * |
| * Initialize (or reset) a hash object |
| * |
| * PARAMS |
| * pCryptHash [I] The hash object to be initialized. |
| */ |
| static inline BOOL init_hash(CRYPTHASH *pCryptHash) { |
| DWORD dwLen; |
| |
| switch (pCryptHash->aiAlgid) |
| { |
| case CALG_HMAC: |
| if (pCryptHash->pHMACInfo) { |
| const PROV_ENUMALGS_EX *pAlgInfo; |
| |
| pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid); |
| if (!pAlgInfo) return FALSE; |
| pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3; |
| init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context); |
| update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, |
| pCryptHash->pHMACInfo->pbInnerString, |
| pCryptHash->pHMACInfo->cbInnerString); |
| } |
| return TRUE; |
| |
| case CALG_MAC: |
| dwLen = sizeof(DWORD); |
| RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN, |
| (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0); |
| pCryptHash->dwHashSize >>= 3; |
| return TRUE; |
| |
| default: |
| return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context); |
| } |
| } |
| |
| /****************************************************************************** |
| * update_hash [Internal] |
| * |
| * Hashes the given data and updates the hash object's state accordingly |
| * |
| * PARAMS |
| * pCryptHash [I] Hash object to be updated. |
| * pbData [I] Pointer to data stream to be hashed. |
| * dwDataLen [I] Length of data stream. |
| */ |
| static inline void update_hash(CRYPTHASH *pCryptHash, const BYTE *pbData, DWORD dwDataLen) |
| { |
| BYTE *pbTemp; |
| |
| switch (pCryptHash->aiAlgid) |
| { |
| case CALG_HMAC: |
| if (pCryptHash->pHMACInfo) |
| update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, |
| pbData, dwDataLen); |
| break; |
| |
| case CALG_MAC: |
| pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen); |
| if (!pbTemp) return; |
| memcpy(pbTemp, pbData, dwDataLen); |
| RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0, |
| pbTemp, &dwDataLen, dwDataLen); |
| HeapFree(GetProcessHeap(), 0, pbTemp); |
| break; |
| |
| default: |
| update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen); |
| } |
| } |
| |
| /****************************************************************************** |
| * finalize_hash [Internal] |
| * |
| * Finalizes the hash, after all data has been hashed with update_hash. |
| * No additional data can be hashed afterwards until the hash gets initialized again. |
| * |
| * PARAMS |
| * pCryptHash [I] Hash object to be finalized. |
| */ |
| static inline void finalize_hash(CRYPTHASH *pCryptHash) { |
| DWORD dwDataLen; |
| |
| switch (pCryptHash->aiAlgid) |
| { |
| case CALG_HMAC: |
| if (pCryptHash->pHMACInfo) { |
| BYTE abHashValue[RSAENH_MAX_HASH_SIZE]; |
| |
| finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, |
| pCryptHash->abHashValue); |
| memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize); |
| init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context); |
| update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, |
| pCryptHash->pHMACInfo->pbOuterString, |
| pCryptHash->pHMACInfo->cbOuterString); |
| update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, |
| abHashValue, pCryptHash->dwHashSize); |
| finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, |
| pCryptHash->abHashValue); |
| } |
| break; |
| |
| case CALG_MAC: |
| dwDataLen = 0; |
| RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0, |
| pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize); |
| break; |
| |
| default: |
| finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue); |
| } |
| } |
| |
| /****************************************************************************** |
| * destroy_key [Internal] |
| * |
| * Destructor for key objects |
| * |
| * PARAMS |
| * pCryptKey [I] Pointer to the key object to be destroyed. |
| * Will be invalid after function returns! |
| */ |
| static void destroy_key(OBJECTHDR *pObject) |
| { |
| CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject; |
| |
| free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context); |
| free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom); |
| free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom); |
| free_data_blob(&pCryptKey->blobHmacKey); |
| HeapFree(GetProcessHeap(), 0, pCryptKey); |
| } |
| |
| /****************************************************************************** |
| * setup_key [Internal] |
| * |
| * Initialize (or reset) a key object |
| * |
| * PARAMS |
| * pCryptKey [I] The key object to be initialized. |
| */ |
| static inline void setup_key(CRYPTKEY *pCryptKey) { |
| pCryptKey->dwState = RSAENH_KEYSTATE_IDLE; |
| memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector)); |
| setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen, |
| pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen, |
| pCryptKey->abKeyValue); |
| } |
| |
| /****************************************************************************** |
| * new_key [Internal] |
| * |
| * Creates a new key object without assigning the actual binary key value. |
| * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function. |
| * |
| * PARAMS |
| * hProv [I] Handle to the provider to which the created key will belong. |
| * aiAlgid [I] The new key shall use the crypto algorithm identified by aiAlgid. |
| * dwFlags [I] Upper 16 bits give the key length. |
| * Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT, |
| * CRYPT_NO_SALT |
| * ppCryptKey [O] Pointer to the created key |
| * |
| * RETURNS |
| * Success: Handle to the created key. |
| * Failure: INVALID_HANDLE_VALUE |
| */ |
| static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey) |
| { |
| HCRYPTKEY hCryptKey; |
| CRYPTKEY *pCryptKey; |
| DWORD dwKeyLen = HIWORD(dwFlags), bKeyLen = dwKeyLen; |
| const PROV_ENUMALGS_EX *peaAlgidInfo; |
| |
| *ppCryptKey = NULL; |
| |
| /* |
| * Retrieve the CSP's capabilities for the given ALG_ID value |
| */ |
| peaAlgidInfo = get_algid_info(hProv, aiAlgid); |
| if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| |
| TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName), |
| dwKeyLen); |
| /* |
| * Assume the default key length, if none is specified explicitly |
| */ |
| if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen; |
| |
| /* |
| * Check if the requested key length is supported by the current CSP. |
| * Adjust key length's for DES algorithms. |
| */ |
| switch (aiAlgid) { |
| case CALG_DES: |
| if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) { |
| dwKeyLen = RSAENH_DES_STORAGE_KEYLEN; |
| } |
| if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) { |
| SetLastError(NTE_BAD_FLAGS); |
| return (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| } |
| break; |
| |
| case CALG_3DES_112: |
| if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) { |
| dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN; |
| } |
| if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) { |
| SetLastError(NTE_BAD_FLAGS); |
| return (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| } |
| break; |
| |
| case CALG_3DES: |
| if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) { |
| dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN; |
| } |
| if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) { |
| SetLastError(NTE_BAD_FLAGS); |
| return (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| } |
| break; |
| |
| case CALG_HMAC: |
| /* Avoid the key length check for HMAC keys, which have unlimited |
| * length. |
| */ |
| break; |
| |
| case CALG_AES: |
| if (!bKeyLen) |
| { |
| TRACE("missing key len for CALG_AES\n"); |
| SetLastError(NTE_BAD_ALGID); |
| return (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| } |
| /* fall through */ |
| default: |
| if (dwKeyLen % 8 || |
| dwKeyLen > peaAlgidInfo->dwMaxLen || |
| dwKeyLen < peaAlgidInfo->dwMinLen) |
| { |
| TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen, |
| peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen); |
| SetLastError(NTE_BAD_DATA); |
| return (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| } |
| } |
| |
| hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, |
| destroy_key, (OBJECTHDR**)&pCryptKey); |
| if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE) |
| { |
| KEYCONTAINER *pKeyContainer = get_key_container(hProv); |
| pCryptKey->aiAlgid = aiAlgid; |
| pCryptKey->hProv = hProv; |
| pCryptKey->dwModeBits = 0; |
| pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | |
| CRYPT_MAC; |
| if (dwFlags & CRYPT_EXPORTABLE) |
| pCryptKey->dwPermissions |= CRYPT_EXPORT; |
| pCryptKey->dwKeyLen = dwKeyLen >> 3; |
| pCryptKey->dwEffectiveKeyLen = 0; |
| |
| /* |
| * For compatibility reasons a 40 bit key on the Enhanced |
| * provider will not have salt |
| */ |
| if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_ENHANCED |
| && (aiAlgid == CALG_RC2 || aiAlgid == CALG_RC4) |
| && (dwFlags & CRYPT_CREATE_SALT) && dwKeyLen == 40) |
| pCryptKey->dwSaltLen = 0; |
| else if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT))) |
| pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen; |
| else |
| pCryptKey->dwSaltLen = 0; |
| memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue)); |
| memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector)); |
| memset(&pCryptKey->siSChannelInfo.saEncAlg, 0, sizeof(pCryptKey->siSChannelInfo.saEncAlg)); |
| memset(&pCryptKey->siSChannelInfo.saMACAlg, 0, sizeof(pCryptKey->siSChannelInfo.saMACAlg)); |
| init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom); |
| init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom); |
| init_data_blob(&pCryptKey->blobHmacKey); |
| |
| switch(aiAlgid) |
| { |
| case CALG_PCT1_MASTER: |
| case CALG_SSL2_MASTER: |
| case CALG_SSL3_MASTER: |
| case CALG_TLS1_MASTER: |
| case CALG_RC4: |
| pCryptKey->dwBlockLen = 0; |
| pCryptKey->dwMode = 0; |
| break; |
| |
| case CALG_RC2: |
| case CALG_DES: |
| case CALG_3DES_112: |
| case CALG_3DES: |
| pCryptKey->dwBlockLen = 8; |
| pCryptKey->dwMode = CRYPT_MODE_CBC; |
| break; |
| |
| case CALG_AES: |
| case CALG_AES_128: |
| case CALG_AES_192: |
| case CALG_AES_256: |
| pCryptKey->dwBlockLen = 16; |
| pCryptKey->dwMode = CRYPT_MODE_CBC; |
| break; |
| |
| case CALG_RSA_KEYX: |
| case CALG_RSA_SIGN: |
| pCryptKey->dwBlockLen = dwKeyLen >> 3; |
| pCryptKey->dwMode = 0; |
| break; |
| |
| case CALG_HMAC: |
| pCryptKey->dwBlockLen = 0; |
| pCryptKey->dwMode = 0; |
| break; |
| } |
| |
| *ppCryptKey = pCryptKey; |
| } |
| |
| return hCryptKey; |
| } |
| |
| /****************************************************************************** |
| * map_key_spec_to_key_pair_name [Internal] |
| * |
| * Returns the name of the registry value associated with a key spec. |
| * |
| * PARAMS |
| * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE |
| * |
| * RETURNS |
| * Success: Name of registry value. |
| * Failure: NULL |
| */ |
| static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec) |
| { |
| LPCSTR szValueName; |
| |
| switch (dwKeySpec) |
| { |
| case AT_KEYEXCHANGE: |
| szValueName = "KeyExchangeKeyPair"; |
| break; |
| case AT_SIGNATURE: |
| szValueName = "SignatureKeyPair"; |
| break; |
| default: |
| WARN("invalid key spec %d\n", dwKeySpec); |
| szValueName = NULL; |
| } |
| return szValueName; |
| } |
| |
| /****************************************************************************** |
| * store_key_pair [Internal] |
| * |
| * Stores a key pair to the registry |
| * |
| * PARAMS |
| * hCryptKey [I] Handle to the key to be stored |
| * hKey [I] Registry key where the key pair is to be stored |
| * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE |
| * dwFlags [I] Flags for protecting the key |
| */ |
| static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags) |
| { |
| LPCSTR szValueName; |
| DATA_BLOB blobIn, blobOut; |
| CRYPTKEY *pKey; |
| DWORD dwLen; |
| BYTE *pbKey; |
| |
| if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec))) |
| return; |
| if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY, |
| (OBJECTHDR**)&pKey)) |
| { |
| if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen)) |
| { |
| pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen); |
| if (pbKey) |
| { |
| if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey, |
| &dwLen)) |
| { |
| blobIn.pbData = pbKey; |
| blobIn.cbData = dwLen; |
| |
| if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL, |
| dwFlags, &blobOut)) |
| { |
| RegSetValueExA(hKey, szValueName, 0, REG_BINARY, |
| blobOut.pbData, blobOut.cbData); |
| LocalFree(blobOut.pbData); |
| } |
| } |
| HeapFree(GetProcessHeap(), 0, pbKey); |
| } |
| } |
| } |
| } |
| |
| /****************************************************************************** |
| * map_key_spec_to_permissions_name [Internal] |
| * |
| * Returns the name of the registry value associated with the permissions for |
| * a key spec. |
| * |
| * PARAMS |
| * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE |
| * |
| * RETURNS |
| * Success: Name of registry value. |
| * Failure: NULL |
| */ |
| static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec) |
| { |
| LPCSTR szValueName; |
| |
| switch (dwKeySpec) |
| { |
| case AT_KEYEXCHANGE: |
| szValueName = "KeyExchangePermissions"; |
| break; |
| case AT_SIGNATURE: |
| szValueName = "SignaturePermissions"; |
| break; |
| default: |
| WARN("invalid key spec %d\n", dwKeySpec); |
| szValueName = NULL; |
| } |
| return szValueName; |
| } |
| |
| /****************************************************************************** |
| * store_key_permissions [Internal] |
| * |
| * Stores a key's permissions to the registry |
| * |
| * PARAMS |
| * hCryptKey [I] Handle to the key whose permissions are to be stored |
| * hKey [I] Registry key where the key permissions are to be stored |
| * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE |
| */ |
| static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec) |
| { |
| LPCSTR szValueName; |
| CRYPTKEY *pKey; |
| |
| if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec))) |
| return; |
| if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY, |
| (OBJECTHDR**)&pKey)) |
| RegSetValueExA(hKey, szValueName, 0, REG_DWORD, |
| (BYTE *)&pKey->dwPermissions, |
| sizeof(pKey->dwPermissions)); |
| } |
| |
| /****************************************************************************** |
| * create_container_key [Internal] |
| * |
| * Creates the registry key for a key container's persistent storage. |
| * |
| * PARAMS |
| * pKeyContainer [I] Pointer to the key container |
| * sam [I] Desired registry access |
| * phKey [O] Returned key |
| */ |
| static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey) |
| { |
| CHAR szRSABase[sizeof(RSAENH_REGKEY) + MAX_PATH]; |
| HKEY hRootKey; |
| |
| sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName); |
| |
| if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) |
| hRootKey = HKEY_LOCAL_MACHINE; |
| else |
| hRootKey = HKEY_CURRENT_USER; |
| |
| /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */ |
| /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */ |
| return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL, |
| REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL) |
| == ERROR_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * open_container_key [Internal] |
| * |
| * Opens a key container's persistent storage for reading. |
| * |
| * PARAMS |
| * pszContainerName [I] Name of the container to be opened. May be the empty |
| * string if the parent key of all containers is to be |
| * opened. |
| * dwFlags [I] Flags indicating which keyset to be opened. |
| * phKey [O] Returned key |
| */ |
| static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, REGSAM access, HKEY *phKey) |
| { |
| CHAR szRSABase[sizeof(RSAENH_REGKEY) + MAX_PATH]; |
| HKEY hRootKey; |
| |
| sprintf(szRSABase, RSAENH_REGKEY, pszContainerName); |
| |
| if (dwFlags & CRYPT_MACHINE_KEYSET) |
| hRootKey = HKEY_LOCAL_MACHINE; |
| else |
| hRootKey = HKEY_CURRENT_USER; |
| |
| /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */ |
| /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */ |
| return RegOpenKeyExA(hRootKey, szRSABase, 0, access, phKey) == |
| ERROR_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * delete_container_key [Internal] |
| * |
| * Deletes a key container's persistent storage. |
| * |
| * PARAMS |
| * pszContainerName [I] Name of the container to be opened. |
| * dwFlags [I] Flags indicating which keyset to be opened. |
| */ |
| static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags) |
| { |
| CHAR szRegKey[sizeof(RSAENH_REGKEY) + MAX_PATH]; |
| HKEY hRootKey; |
| |
| sprintf(szRegKey, RSAENH_REGKEY, pszContainerName); |
| |
| if (dwFlags & CRYPT_MACHINE_KEYSET) |
| hRootKey = HKEY_LOCAL_MACHINE; |
| else |
| hRootKey = HKEY_CURRENT_USER; |
| if (!RegDeleteKeyA(hRootKey, szRegKey)) { |
| SetLastError(ERROR_SUCCESS); |
| return TRUE; |
| } else { |
| SetLastError(NTE_BAD_KEYSET); |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * store_key_container_keys [Internal] |
| * |
| * Stores key container's keys in a persistent location. |
| * |
| * PARAMS |
| * pKeyContainer [I] Pointer to the key container whose keys are to be saved |
| */ |
| static void store_key_container_keys(KEYCONTAINER *pKeyContainer) |
| { |
| HKEY hKey; |
| DWORD dwFlags; |
| |
| /* On WinXP, persistent keys are stored in a file located at: |
| * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string |
| */ |
| |
| if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) |
| dwFlags = CRYPTPROTECT_LOCAL_MACHINE; |
| else |
| dwFlags = 0; |
| |
| if (create_container_key(pKeyContainer, KEY_WRITE, &hKey)) |
| { |
| store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey, |
| AT_KEYEXCHANGE, dwFlags); |
| store_key_pair(pKeyContainer->hSignatureKeyPair, hKey, |
| AT_SIGNATURE, dwFlags); |
| RegCloseKey(hKey); |
| } |
| } |
| |
| /****************************************************************************** |
| * store_key_container_permissions [Internal] |
| * |
| * Stores key container's key permissions in a persistent location. |
| * |
| * PARAMS |
| * pKeyContainer [I] Pointer to the key container whose key permissions are to |
| * be saved |
| */ |
| static void store_key_container_permissions(KEYCONTAINER *pKeyContainer) |
| { |
| HKEY hKey; |
| |
| if (create_container_key(pKeyContainer, KEY_WRITE, &hKey)) |
| { |
| store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey, |
| AT_KEYEXCHANGE); |
| store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey, |
| AT_SIGNATURE); |
| RegCloseKey(hKey); |
| } |
| } |
| |
| /****************************************************************************** |
| * release_key_container_keys [Internal] |
| * |
| * Releases key container's keys. |
| * |
| * PARAMS |
| * pKeyContainer [I] Pointer to the key container whose keys are to be released. |
| */ |
| static void release_key_container_keys(KEYCONTAINER *pKeyContainer) |
| { |
| release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, |
| RSAENH_MAGIC_KEY); |
| release_handle(&handle_table, pKeyContainer->hSignatureKeyPair, |
| RSAENH_MAGIC_KEY); |
| } |
| |
| /****************************************************************************** |
| * destroy_key_container [Internal] |
| * |
| * Destructor for key containers. |
| * |
| * PARAMS |
| * pObjectHdr [I] Pointer to the key container to be destroyed. |
| */ |
| static void destroy_key_container(OBJECTHDR *pObjectHdr) |
| { |
| KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr; |
| |
| if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT)) |
| { |
| store_key_container_keys(pKeyContainer); |
| store_key_container_permissions(pKeyContainer); |
| release_key_container_keys(pKeyContainer); |
| } |
| else |
| release_key_container_keys(pKeyContainer); |
| HeapFree( GetProcessHeap(), 0, pKeyContainer ); |
| } |
| |
| /****************************************************************************** |
| * new_key_container [Internal] |
| * |
| * Create a new key container. The personality (RSA Base, Strong or Enhanced CP) |
| * of the CSP is determined via the pVTable->pszProvName string. |
| * |
| * PARAMS |
| * pszContainerName [I] Name of the key container. |
| * pVTable [I] Callback functions and context info provided by the OS |
| * |
| * RETURNS |
| * Success: Handle to the new key container. |
| * Failure: INVALID_HANDLE_VALUE |
| */ |
| static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable) |
| { |
| KEYCONTAINER *pKeyContainer; |
| HCRYPTPROV hKeyContainer; |
| |
| hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER, |
| destroy_key_container, (OBJECTHDR**)&pKeyContainer); |
| if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE) |
| { |
| lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH); |
| pKeyContainer->dwFlags = dwFlags; |
| pKeyContainer->dwEnumAlgsCtr = 0; |
| pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| if (pVTable && pVTable->pszProvName) { |
| lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH); |
| if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) { |
| pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE; |
| } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) { |
| pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED; |
| } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) { |
| pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL; |
| } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A) || |
| !strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_XP_A)) { |
| pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES; |
| } else { |
| pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG; |
| } |
| } |
| |
| /* The new key container has to be inserted into the CSP immediately |
| * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */ |
| if (!(dwFlags & CRYPT_VERIFYCONTEXT)) { |
| HKEY hKey; |
| |
| if (create_container_key(pKeyContainer, KEY_WRITE, &hKey)) |
| RegCloseKey(hKey); |
| } |
| } |
| |
| return hKeyContainer; |
| } |
| |
| /****************************************************************************** |
| * read_key_value [Internal] |
| * |
| * Reads a key pair value from the registry |
| * |
| * PARAMS |
| * hKeyContainer [I] Crypt provider to use to import the key |
| * hKey [I] Registry key from which to read the key pair |
| * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE |
| * dwFlags [I] Flags for unprotecting the key |
| * phCryptKey [O] Returned key |
| */ |
| static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey) |
| { |
| LPCSTR szValueName; |
| DWORD dwValueType, dwLen; |
| BYTE *pbKey; |
| DATA_BLOB blobIn, blobOut; |
| BOOL ret = FALSE; |
| |
| if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec))) |
| return FALSE; |
| if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) == |
| ERROR_SUCCESS) |
| { |
| pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen); |
| if (pbKey) |
| { |
| if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) == |
| ERROR_SUCCESS) |
| { |
| blobIn.pbData = pbKey; |
| blobIn.cbData = dwLen; |
| |
| if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL, |
| dwFlags, &blobOut)) |
| { |
| ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0, |
| FALSE, phCryptKey); |
| LocalFree(blobOut.pbData); |
| } |
| } |
| HeapFree(GetProcessHeap(), 0, pbKey); |
| } |
| } |
| if (ret) |
| { |
| CRYPTKEY *pKey; |
| |
| if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY, |
| (OBJECTHDR**)&pKey)) |
| { |
| if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec))) |
| { |
| dwLen = sizeof(pKey->dwPermissions); |
| RegQueryValueExA(hKey, szValueName, 0, NULL, |
| (BYTE *)&pKey->dwPermissions, &dwLen); |
| } |
| } |
| } |
| return ret; |
| } |
| |
| /****************************************************************************** |
| * read_key_container [Internal] |
| * |
| * Tries to read the persistent state of the key container (mainly the signature |
| * and key exchange private keys) given by pszContainerName. |
| * |
| * PARAMS |
| * pszContainerName [I] Name of the key container to read from the registry |
| * pVTable [I] Pointer to context data provided by the operating system |
| * |
| * RETURNS |
| * Success: Handle to the key container read from the registry |
| * Failure: INVALID_HANDLE_VALUE |
| */ |
| static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable) |
| { |
| HKEY hKey; |
| KEYCONTAINER *pKeyContainer; |
| HCRYPTPROV hKeyContainer; |
| HCRYPTKEY hCryptKey; |
| |
| if (!open_container_key(pszContainerName, dwFlags, KEY_READ, &hKey)) |
| { |
| SetLastError(NTE_BAD_KEYSET); |
| return (HCRYPTPROV)INVALID_HANDLE_VALUE; |
| } |
| |
| hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable); |
| if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE) |
| { |
| DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ? |
| CRYPTPROTECT_LOCAL_MACHINE : 0; |
| |
| if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER, |
| (OBJECTHDR**)&pKeyContainer)) |
| return (HCRYPTPROV)INVALID_HANDLE_VALUE; |
| |
| /* read_key_value calls import_key, which calls import_private_key, |
| * which implicitly installs the key value into the appropriate key |
| * container key. Thus the ref count is incremented twice, once for |
| * the output key value, and once for the implicit install, and needs |
| * to be decremented to balance the two. |
| */ |
| if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE, |
| dwProtectFlags, &hCryptKey)) |
| release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY); |
| if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE, |
| dwProtectFlags, &hCryptKey)) |
| release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY); |
| } |
| |
| return hKeyContainer; |
| } |
| |
| /****************************************************************************** |
| * build_hash_signature [Internal] |
| * |
| * Builds a padded version of a hash to match the length of the RSA key modulus. |
| * |
| * PARAMS |
| * pbSignature [O] The padded hash object is stored here. |
| * dwLen [I] Length of the pbSignature buffer. |
| * aiAlgid [I] Algorithm identifier of the hash to be padded. |
| * abHashValue [I] The value of the hash object. |
| * dwHashLen [I] Length of the hash value. |
| * dwFlags [I] Selection of padding algorithm. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE (NTE_BAD_ALGID) |
| */ |
| static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid, |
| const BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags) |
| { |
| /* These prefixes are meant to be concatenated with hash values of the |
| * respective kind to form a PKCS #7 DigestInfo. */ |
| static const struct tagOIDDescriptor { |
| ALG_ID aiAlgid; |
| DWORD dwLen; |
| const BYTE abOID[19]; |
| } aOIDDescriptor[] = { |
| { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, |
| 0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } }, |
| { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, |
| 0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } }, |
| { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, |
| 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } }, |
| { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, |
| 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } }, |
| { CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, |
| 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, |
| 0x05, 0x00, 0x04, 0x20 } }, |
| { CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, |
| 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, |
| 0x05, 0x00, 0x04, 0x30 } }, |
| { CALG_SHA_512, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, |
| 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, |
| 0x05, 0x00, 0x04, 0x40 } }, |
| { CALG_SSL3_SHAMD5, 0, { 0 } }, |
| { 0, 0, { 0 } } |
| }; |
| DWORD dwIdxOID, i, j; |
| |
| for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) { |
| if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break; |
| } |
| |
| if (!aOIDDescriptor[dwIdxOID].aiAlgid) { |
| SetLastError(NTE_BAD_ALGID); |
| return FALSE; |
| } |
| |
| /* Build the padded signature */ |
| if (dwFlags & CRYPT_X931_FORMAT) { |
| pbSignature[0] = 0x6b; |
| for (i=1; i < dwLen - dwHashLen - 3; i++) { |
| pbSignature[i] = 0xbb; |
| } |
| pbSignature[i++] = 0xba; |
| for (j=0; j < dwHashLen; j++, i++) { |
| pbSignature[i] = abHashValue[j]; |
| } |
| pbSignature[i++] = 0x33; |
| pbSignature[i++] = 0xcc; |
| } else { |
| pbSignature[0] = 0x00; |
| pbSignature[1] = 0x01; |
| if (dwFlags & CRYPT_NOHASHOID) { |
| for (i=2; i < dwLen - 1 - dwHashLen; i++) { |
| pbSignature[i] = 0xff; |
| } |
| pbSignature[i++] = 0x00; |
| } else { |
| for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) { |
| pbSignature[i] = 0xff; |
| } |
| pbSignature[i++] = 0x00; |
| for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) { |
| pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j]; |
| } |
| } |
| for (j=0; j < dwHashLen; j++) { |
| pbSignature[i++] = abHashValue[j]; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * tls1_p [Internal] |
| * |
| * This is an implementation of the 'P_hash' helper function for TLS1's PRF. |
| * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5. |
| * The pseudo random stream generated by this function is exclusive or'ed with |
| * the data in pbBuffer. |
| * |
| * PARAMS |
| * hHMAC [I] HMAC object, which will be used in pseudo random generation |
| * pblobSeed [I] Seed value |
| * pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data |
| * dwBufferLen [I] Number of pseudo random bytes desired |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| */ |
| static BOOL tls1_p(HCRYPTHASH hHMAC, const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, |
| DWORD dwBufferLen) |
| { |
| CRYPTHASH *pHMAC; |
| BYTE abAi[RSAENH_MAX_HASH_SIZE]; |
| DWORD i = 0; |
| |
| if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) { |
| SetLastError(NTE_BAD_HASH); |
| return FALSE; |
| } |
| |
| /* compute A_1 = HMAC(seed) */ |
| init_hash(pHMAC); |
| update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData); |
| finalize_hash(pHMAC); |
| memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize); |
| |
| do { |
| /* compute HMAC(A_i + seed) */ |
| init_hash(pHMAC); |
| update_hash(pHMAC, abAi, pHMAC->dwHashSize); |
| update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData); |
| finalize_hash(pHMAC); |
| |
| /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */ |
| do { |
| if (i >= dwBufferLen) break; |
| pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize]; |
| i++; |
| } while (i % pHMAC->dwHashSize); |
| |
| /* compute A_{i+1} = HMAC(A_i) */ |
| init_hash(pHMAC); |
| update_hash(pHMAC, abAi, pHMAC->dwHashSize); |
| finalize_hash(pHMAC); |
| memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize); |
| } while (i < dwBufferLen); |
| |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * tls1_prf [Internal] |
| * |
| * TLS1 pseudo random function as specified in RFC 2246, chapter 5 |
| * |
| * PARAMS |
| * hProv [I] Key container used to compute the pseudo random stream |
| * hSecret [I] Key that holds the (pre-)master secret |
| * pblobLabel [I] Descriptive label |
| * pblobSeed [I] Seed value |
| * pbBuffer [O] Pseudo random numbers will be stored here |
| * dwBufferLen [I] Number of pseudo random bytes desired |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| */ |
| static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, const PCRYPT_DATA_BLOB pblobLabel, |
| const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, DWORD dwBufferLen) |
| { |
| HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 }; |
| HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE; |
| HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| CRYPTKEY *pHalfSecret, *pSecret; |
| DWORD dwHalfSecretLen; |
| BOOL result = FALSE; |
| CRYPT_DATA_BLOB blobLabelSeed; |
| |
| TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n", |
| hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen); |
| |
| if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) { |
| SetLastError(NTE_FAIL); |
| return FALSE; |
| } |
| |
| dwHalfSecretLen = (pSecret->dwKeyLen+1)/2; |
| |
| /* concatenation of the label and the seed */ |
| if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit; |
| |
| /* zero out the buffer, since two random streams will be xor'ed into it. */ |
| memset(pbBuffer, 0, dwBufferLen); |
| |
| /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides |
| * the biggest range of valid key lengths. */ |
| hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret); |
| if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit; |
| |
| /* Derive an HMAC_MD5 hash and call the helper function. */ |
| memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen); |
| if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit; |
| hmacInfo.HashAlgid = CALG_MD5; |
| if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit; |
| if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit; |
| |
| /* Reconfigure to HMAC_SHA hash and call helper function again. */ |
| memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen); |
| hmacInfo.HashAlgid = CALG_SHA; |
| if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit; |
| if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit; |
| |
| result = TRUE; |
| exit: |
| release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY); |
| if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC); |
| free_data_blob(&blobLabelSeed); |
| return result; |
| } |
| |
| /****************************************************************************** |
| * pad_data [Internal] |
| * |
| * Helper function for data padding according to PKCS1 #2 |
| * |
| * PARAMS |
| * abData [I] The data to be padded |
| * dwDataLen [I] Length of the data |
| * abBuffer [O] Padded data will be stored here |
| * dwBufferLen [I] Length of the buffer (also length of padded data) |
| * dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK) |
| * |
| * RETURN |
| * Success: TRUE |
| * Failure: FALSE (NTE_BAD_LEN, too much data to pad) |
| */ |
| static BOOL pad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, |
| DWORD dwFlags) |
| { |
| DWORD i; |
| |
| /* Ensure there is enough space for PKCS1 #2 padding */ |
| if (dwDataLen > dwBufferLen-11) { |
| SetLastError(NTE_BAD_LEN); |
| return FALSE; |
| } |
| |
| memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen); |
| |
| abBuffer[0] = 0x00; |
| abBuffer[1] = RSAENH_PKC_BLOCKTYPE; |
| for (i=2; i < dwBufferLen - dwDataLen - 1; i++) |
| do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]); |
| if (dwFlags & CRYPT_SSL2_FALLBACK) |
| for (i-=8; i < dwBufferLen - dwDataLen - 1; i++) |
| abBuffer[i] = 0x03; |
| abBuffer[i] = 0x00; |
| |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * unpad_data [Internal] |
| * |
| * Remove the PKCS1 padding from RSA decrypted data |
| * |
| * PARAMS |
| * abData [I] The padded data |
| * dwDataLen [I] Length of the padded data |
| * abBuffer [O] Data without padding will be stored here |
| * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data |
| * dwFlags [I] Currently none defined |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small) |
| */ |
| static BOOL unpad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, |
| DWORD dwFlags) |
| { |
| DWORD i; |
| |
| if (dwDataLen < 3) |
| { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| for (i=2; i<dwDataLen; i++) |
| if (!abData[i]) |
| break; |
| |
| if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) || |
| (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE)) |
| { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| |
| *dwBufferLen = dwDataLen - i - 1; |
| memmove(abBuffer, abData + i + 1, *dwBufferLen); |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * CPAcquireContext (RSAENH.@) |
| * |
| * Acquire a handle to the key container specified by pszContainer |
| * |
| * PARAMS |
| * phProv [O] Pointer to the location the acquired handle will be written to. |
| * pszContainer [I] Name of the desired key container. See Notes |
| * dwFlags [I] Flags. See Notes. |
| * pVTable [I] Pointer to a PVTableProvStruct containing callbacks. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| * |
| * NOTES |
| * If pszContainer is NULL or points to a zero length string the user's login |
| * name will be used as the key container name. |
| * |
| * If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created. |
| * If a keyset with the given name already exists, the function fails and sets |
| * last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified |
| * key container does not exist, function fails and sets last error to |
| * NTE_BAD_KEYSET. |
| */ |
| BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer, |
| DWORD dwFlags, PVTableProvStruc pVTable) |
| { |
| CHAR szKeyContainerName[MAX_PATH]; |
| |
| TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv, |
| debugstr_a(pszContainer), dwFlags, pVTable); |
| |
| if (pszContainer && *pszContainer) |
| { |
| lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH); |
| } |
| else |
| { |
| DWORD dwLen = sizeof(szKeyContainerName); |
| if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE; |
| } |
| |
| switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET)) |
| { |
| case 0: |
| *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable); |
| break; |
| |
| case CRYPT_DELETEKEYSET: |
| return delete_container_key(szKeyContainerName, dwFlags); |
| |
| case CRYPT_NEWKEYSET: |
| *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable); |
| if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) |
| { |
| release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER); |
| TRACE("Can't create new keyset, already exists\n"); |
| SetLastError(NTE_EXISTS); |
| return FALSE; |
| } |
| *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable); |
| break; |
| |
| case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET: |
| case CRYPT_VERIFYCONTEXT: |
| if (pszContainer && *pszContainer) { |
| TRACE("pszContainer should be empty\n"); |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| *phProv = new_key_container("", dwFlags, pVTable); |
| break; |
| |
| default: |
| *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE; |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) { |
| SetLastError(ERROR_SUCCESS); |
| return TRUE; |
| } else { |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPCreateHash (RSAENH.@) |
| * |
| * CPCreateHash creates and initializes a new hash object. |
| * |
| * PARAMS |
| * hProv [I] Handle to the key container to which the new hash will belong. |
| * Algid [I] Identifies the hash algorithm, which will be used for the hash. |
| * hKey [I] Handle to a session key applied for keyed hashes. |
| * dwFlags [I] Currently no flags defined. Must be zero. |
| * phHash [O] Points to the location where a handle to the new hash will be stored. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| * |
| * NOTES |
| * hKey is a handle to a session key applied in keyed hashes like MAC and HMAC. |
| * If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero. |
| */ |
| BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, |
| HCRYPTHASH *phHash) |
| { |
| CRYPTKEY *pCryptKey; |
| CRYPTHASH *pCryptHash; |
| const PROV_ENUMALGS_EX *peaAlgidInfo; |
| |
| TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey, |
| dwFlags, phHash); |
| |
| peaAlgidInfo = get_algid_info(hProv, Algid); |
| if (!peaAlgidInfo) return FALSE; |
| |
| if (dwFlags) |
| { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH || |
| Algid == CALG_TLS1PRF) |
| { |
| if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) && |
| (pCryptKey->aiAlgid != CALG_TLS1_MASTER)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| if (Algid == CALG_SCHANNEL_MASTER_HASH && |
| ((!pCryptKey->siSChannelInfo.blobClientRandom.cbData) || |
| (!pCryptKey->siSChannelInfo.blobServerRandom.cbData))) |
| { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| |
| if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) { |
| SetLastError(NTE_BAD_KEY_STATE); |
| return FALSE; |
| } |
| } |
| |
| *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH, |
| destroy_hash, (OBJECTHDR**)&pCryptHash); |
| if (!pCryptHash) return FALSE; |
| |
| pCryptHash->aiAlgid = Algid; |
| pCryptHash->hKey = hKey; |
| pCryptHash->hProv = hProv; |
| pCryptHash->dwState = RSAENH_HASHSTATE_HASHING; |
| pCryptHash->pHMACInfo = NULL; |
| pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3; |
| init_data_blob(&pCryptHash->tpPRFParams.blobLabel); |
| init_data_blob(&pCryptHash->tpPRFParams.blobSeed); |
| |
| if (Algid == CALG_SCHANNEL_MASTER_HASH) { |
| static const char keyex[] = "key expansion"; |
| BYTE key_expansion[sizeof keyex]; |
| CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion }; |
| |
| memcpy( key_expansion, keyex, sizeof keyex ); |
| |
| if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) { |
| static const char msec[] = "master secret"; |
| BYTE master_secret[sizeof msec]; |
| CRYPT_DATA_BLOB blobLabel = { 13, master_secret }; |
| BYTE abKeyValue[48]; |
| |
| memcpy( master_secret, msec, sizeof msec ); |
| |
| /* See RFC 2246, chapter 8.1 */ |
| if (!concat_data_blobs(&blobRandom, |
| &pCryptKey->siSChannelInfo.blobClientRandom, |
| &pCryptKey->siSChannelInfo.blobServerRandom)) |
| { |
| return FALSE; |
| } |
| tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48); |
| pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY; |
| memcpy(pCryptKey->abKeyValue, abKeyValue, 48); |
| free_data_blob(&blobRandom); |
| } |
| |
| /* See RFC 2246, chapter 6.3 */ |
| if (!concat_data_blobs(&blobRandom, |
| &pCryptKey->siSChannelInfo.blobServerRandom, |
| &pCryptKey->siSChannelInfo.blobClientRandom)) |
| { |
| return FALSE; |
| } |
| tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue, |
| RSAENH_MAX_HASH_SIZE); |
| free_data_blob(&blobRandom); |
| } |
| |
| return init_hash(pCryptHash); |
| } |
| |
| /****************************************************************************** |
| * CPDestroyHash (RSAENH.@) |
| * |
| * Releases the handle to a hash object. The object is destroyed if its reference |
| * count reaches zero. |
| * |
| * PARAMS |
| * hProv [I] Handle to the key container to which the hash object belongs. |
| * hHash [I] Handle to the hash object to be released. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| */ |
| BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash) |
| { |
| TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) |
| { |
| SetLastError(NTE_BAD_HASH); |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * CPDestroyKey (RSAENH.@) |
| * |
| * Releases the handle to a key object. The object is destroyed if its reference |
| * count reaches zero. |
| * |
| * PARAMS |
| * hProv [I] Handle to the key container to which the key object belongs. |
| * hKey [I] Handle to the key object to be released. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| */ |
| BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey) |
| { |
| TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * CPDuplicateHash (RSAENH.@) |
| * |
| * Clones a hash object including its current state. |
| * |
| * PARAMS |
| * hUID [I] Handle to the key container the hash belongs to. |
| * hHash [I] Handle to the hash object to be cloned. |
| * pdwReserved [I] Reserved. Must be NULL. |
| * dwFlags [I] No flags are currently defined. Must be 0. |
| * phHash [O] Handle to the cloned hash object. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved, |
| DWORD dwFlags, HCRYPTHASH *phHash) |
| { |
| CRYPTHASH *pSrcHash, *pDestHash; |
| |
| TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash, |
| pdwReserved, dwFlags, phHash); |
| |
| if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash)) |
| { |
| SetLastError(NTE_BAD_HASH); |
| return FALSE; |
| } |
| |
| if (!phHash || pdwReserved || dwFlags) |
| { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| |
| *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH, |
| destroy_hash, (OBJECTHDR**)&pDestHash); |
| if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE) |
| { |
| *pDestHash = *pSrcHash; |
| duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context); |
| copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo); |
| copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel); |
| copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed); |
| } |
| |
| return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE; |
| } |
| |
| /****************************************************************************** |
| * CPDuplicateKey (RSAENH.@) |
| * |
| * Clones a key object including its current state. |
| * |
| * PARAMS |
| * hUID [I] Handle to the key container the hash belongs to. |
| * hKey [I] Handle to the key object to be cloned. |
| * pdwReserved [I] Reserved. Must be NULL. |
| * dwFlags [I] No flags are currently defined. Must be 0. |
| * phHash [O] Handle to the cloned key object. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved, |
| DWORD dwFlags, HCRYPTKEY *phKey) |
| { |
| CRYPTKEY *pSrcKey, *pDestKey; |
| |
| TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey, |
| pdwReserved, dwFlags, phKey); |
| |
| if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| if (!phKey || pdwReserved || dwFlags) |
| { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| |
| *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key, |
| (OBJECTHDR**)&pDestKey); |
| if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE) |
| { |
| *pDestKey = *pSrcKey; |
| copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom, |
| &pSrcKey->siSChannelInfo.blobServerRandom); |
| copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom, |
| &pSrcKey->siSChannelInfo.blobClientRandom); |
| duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context); |
| return TRUE; |
| } |
| else |
| { |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPEncrypt (RSAENH.@) |
| * |
| * Encrypt data. |
| * |
| * PARAMS |
| * hProv [I] The key container hKey and hHash belong to. |
| * hKey [I] The key used to encrypt the data. |
| * hHash [I] An optional hash object for parallel hashing. See notes. |
| * Final [I] Indicates if this is the last block of data to encrypt. |
| * dwFlags [I] Currently no flags defined. Must be zero. |
| * pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there. |
| * pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data. |
| * dwBufLen [I] Size of the buffer at pbData. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| * |
| * NOTES |
| * If a hash object handle is provided in hHash, it will be updated with the plaintext. |
| * This is useful for message signatures. |
| * |
| * This function uses the standard WINAPI protocol for querying data of dynamic length. |
| */ |
| BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, |
| DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen) |
| { |
| CRYPTKEY *pCryptKey; |
| BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE]; |
| DWORD dwEncryptedLen, i, j, k; |
| |
| TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, " |
| "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen, |
| dwBufLen); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (dwFlags) |
| { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) |
| pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING; |
| |
| if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) |
| { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| |
| if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) { |
| if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE; |
| } |
| |
| if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) { |
| if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| |
| dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen; |
| |
| if (pbData == NULL) { |
| *pdwDataLen = dwEncryptedLen; |
| return TRUE; |
| } |
| else if (dwEncryptedLen > dwBufLen) { |
| *pdwDataLen = dwEncryptedLen; |
| SetLastError(ERROR_MORE_DATA); |
| return FALSE; |
| } |
| |
| /* Pad final block with length bytes */ |
| for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen; |
| *pdwDataLen = dwEncryptedLen; |
| |
| for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) { |
| switch (pCryptKey->dwMode) { |
| case CRYPT_MODE_ECB: |
| encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, |
| RSAENH_ENCRYPT); |
| break; |
| |
| case CRYPT_MODE_CBC: |
| for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j]; |
| encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, |
| RSAENH_ENCRYPT); |
| memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen); |
| break; |
| |
| case CRYPT_MODE_CFB: |
| for (j=0; j<pCryptKey->dwBlockLen; j++) { |
| encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, |
| pCryptKey->abChainVector, o, RSAENH_ENCRYPT); |
| out[j] = in[j] ^ o[0]; |
| for (k=0; k<pCryptKey->dwBlockLen-1; k++) |
| pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1]; |
| pCryptKey->abChainVector[k] = out[j]; |
| } |
| break; |
| |
| default: |
| SetLastError(NTE_BAD_ALGID); |
| return FALSE; |
| } |
| memcpy(in, out, pCryptKey->dwBlockLen); |
| } |
| } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) { |
| if (pbData == NULL) { |
| *pdwDataLen = dwBufLen; |
| return TRUE; |
| } |
| encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen); |
| } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) { |
| if (pCryptKey->aiAlgid == CALG_RSA_SIGN) { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| if (!pbData) { |
| *pdwDataLen = pCryptKey->dwBlockLen; |
| return TRUE; |
| } |
| if (dwBufLen < pCryptKey->dwBlockLen) { |
| SetLastError(ERROR_MORE_DATA); |
| return FALSE; |
| } |
| if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE; |
| encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT); |
| *pdwDataLen = pCryptKey->dwBlockLen; |
| Final = TRUE; |
| } else { |
| SetLastError(NTE_BAD_TYPE); |
| return FALSE; |
| } |
| |
| if (Final) setup_key(pCryptKey); |
| |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * CPDecrypt (RSAENH.@) |
| * |
| * Decrypt data. |
| * |
| * PARAMS |
| * hProv [I] The key container hKey and hHash belong to. |
| * hKey [I] The key used to decrypt the data. |
| * hHash [I] An optional hash object for parallel hashing. See notes. |
| * Final [I] Indicates if this is the last block of data to decrypt. |
| * dwFlags [I] Currently no flags defined. Must be zero. |
| * pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there. |
| * pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| * |
| * NOTES |
| * If a hash object handle is provided in hHash, it will be updated with the plaintext. |
| * This is useful for message signatures. |
| * |
| * This function uses the standard WINAPI protocol for querying data of dynamic length. |
| */ |
| BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, |
| DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen) |
| { |
| CRYPTKEY *pCryptKey; |
| BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE]; |
| DWORD i, j, k; |
| DWORD dwMax; |
| |
| TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, " |
| "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (dwFlags) |
| { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) |
| pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING; |
| |
| if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) |
| { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| |
| dwMax=*pdwDataLen; |
| |
| if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) { |
| for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) { |
| switch (pCryptKey->dwMode) { |
| case CRYPT_MODE_ECB: |
| encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, |
| RSAENH_DECRYPT); |
| break; |
| |
| case CRYPT_MODE_CBC: |
| encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, |
| RSAENH_DECRYPT); |
| for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j]; |
| memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen); |
| break; |
| |
| case CRYPT_MODE_CFB: |
| for (j=0; j<pCryptKey->dwBlockLen; j++) { |
| encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, |
| pCryptKey->abChainVector, o, RSAENH_ENCRYPT); |
| out[j] = in[j] ^ o[0]; |
| for (k=0; k<pCryptKey->dwBlockLen-1; k++) |
| pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1]; |
| pCryptKey->abChainVector[k] = in[j]; |
| } |
| break; |
| |
| default: |
| SetLastError(NTE_BAD_ALGID); |
| return FALSE; |
| } |
| memcpy(in, out, pCryptKey->dwBlockLen); |
| } |
| if (Final) { |
| if (pbData[*pdwDataLen-1] && |
| pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen && |
| pbData[*pdwDataLen-1] <= *pdwDataLen) { |
| BOOL padOkay = TRUE; |
| |
| /* check that every bad byte has the same value */ |
| for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++) |
| if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1]) |
| padOkay = FALSE; |
| if (padOkay) |
| *pdwDataLen -= pbData[*pdwDataLen-1]; |
| else { |
| SetLastError(NTE_BAD_DATA); |
| setup_key(pCryptKey); |
| return FALSE; |
| } |
| } |
| else { |
| SetLastError(NTE_BAD_DATA); |
| setup_key(pCryptKey); |
| return FALSE; |
| } |
| } |
| |
| } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) { |
| encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen); |
| } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) { |
| if (pCryptKey->aiAlgid == CALG_RSA_SIGN) { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT); |
| if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE; |
| Final = TRUE; |
| } else { |
| SetLastError(NTE_BAD_TYPE); |
| return FALSE; |
| } |
| |
| if (Final) setup_key(pCryptKey); |
| |
| if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) { |
| if (*pdwDataLen>dwMax || |
| !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey, |
| DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen) |
| { |
| BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData; |
| ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1); |
| DWORD dwDataLen; |
| |
| if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) { |
| SetLastError(NTE_BAD_KEY); /* FIXME: error code? */ |
| return FALSE; |
| } |
| |
| dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen; |
| if (pbData) { |
| if (*pdwDataLen < dwDataLen) { |
| SetLastError(ERROR_MORE_DATA); |
| *pdwDataLen = dwDataLen; |
| return FALSE; |
| } |
| |
| pBlobHeader->bType = SIMPLEBLOB; |
| pBlobHeader->bVersion = CUR_BLOB_VERSION; |
| pBlobHeader->reserved = 0; |
| pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid; |
| |
| *pAlgid = pPubKey->aiAlgid; |
| |
| if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1), |
| pPubKey->dwBlockLen, dwFlags)) |
| { |
| return FALSE; |
| } |
| |
| encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1), |
| (BYTE*)(pAlgid+1), RSAENH_ENCRYPT); |
| } |
| *pdwDataLen = dwDataLen; |
| return TRUE; |
| } |
| |
| static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData, |
| DWORD *pdwDataLen) |
| { |
| BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData; |
| RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1); |
| DWORD dwDataLen; |
| |
| if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen; |
| if (pbData) { |
| if (*pdwDataLen < dwDataLen) { |
| SetLastError(ERROR_MORE_DATA); |
| *pdwDataLen = dwDataLen; |
| return FALSE; |
| } |
| |
| pBlobHeader->bType = PUBLICKEYBLOB; |
| pBlobHeader->bVersion = CUR_BLOB_VERSION; |
| pBlobHeader->reserved = 0; |
| pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid; |
| |
| pRSAPubKey->magic = RSAENH_MAGIC_RSA1; |
| pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3; |
| |
| export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, |
| pCryptKey->dwKeyLen, &pRSAPubKey->pubexp); |
| } |
| *pdwDataLen = dwDataLen; |
| return TRUE; |
| } |
| |
| static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force, |
| BYTE *pbData, DWORD *pdwDataLen) |
| { |
| BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData; |
| RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1); |
| DWORD dwDataLen; |
| |
| if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT)) |
| { |
| SetLastError(NTE_BAD_KEY_STATE); |
| return FALSE; |
| } |
| |
| dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + |
| 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1); |
| if (pbData) { |
| if (*pdwDataLen < dwDataLen) { |
| SetLastError(ERROR_MORE_DATA); |
| *pdwDataLen = dwDataLen; |
| return FALSE; |
| } |
| |
| pBlobHeader->bType = PRIVATEKEYBLOB; |
| pBlobHeader->bVersion = CUR_BLOB_VERSION; |
| pBlobHeader->reserved = 0; |
| pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid; |
| |
| pRSAPubKey->magic = RSAENH_MAGIC_RSA2; |
| pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3; |
| |
| export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, |
| pCryptKey->dwKeyLen, &pRSAPubKey->pubexp); |
| } |
| *pdwDataLen = dwDataLen; |
| return TRUE; |
| } |
| |
| static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData, |
| DWORD *pdwDataLen) |
| { |
| BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData; |
| DWORD *pKeyLen = (DWORD*)(pBlobHeader+1); |
| BYTE *pbKey = (BYTE*)(pKeyLen+1); |
| DWORD dwDataLen; |
| |
| dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen; |
| if (pbData) { |
| if (*pdwDataLen < dwDataLen) { |
| SetLastError(ERROR_MORE_DATA); |
| *pdwDataLen = dwDataLen; |
| return FALSE; |
| } |
| |
| pBlobHeader->bType = PLAINTEXTKEYBLOB; |
| pBlobHeader->bVersion = CUR_BLOB_VERSION; |
| pBlobHeader->reserved = 0; |
| pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid; |
| |
| *pKeyLen = pCryptKey->dwKeyLen; |
| memcpy(pbKey, pCryptKey->abKeyValue, pCryptKey->dwKeyLen); |
| } |
| *pdwDataLen = dwDataLen; |
| return TRUE; |
| } |
| /****************************************************************************** |
| * crypt_export_key [Internal] |
| * |
| * Export a key into a binary large object (BLOB). Called by CPExportKey and |
| * by store_key_pair. |
| * |
| * PARAMS |
| * pCryptKey [I] Key to be exported. |
| * hPubKey [I] Key used to encrypt sensitive BLOB data. |
| * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB. |
| * dwFlags [I] Currently none defined. |
| * force [I] If TRUE, the key is written no matter what the key's |
| * permissions are. Otherwise the key's permissions are |
| * checked before exporting. |
| * pbData [O] Pointer to a buffer where the BLOB will be written to. |
| * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey, |
| DWORD dwBlobType, DWORD dwFlags, BOOL force, |
| BYTE *pbData, DWORD *pdwDataLen) |
| { |
| CRYPTKEY *pPubKey; |
| |
| if (dwFlags & CRYPT_SSL2_FALLBACK) { |
| if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| } |
| |
| switch ((BYTE)dwBlobType) |
| { |
| case SIMPLEBLOB: |
| if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){ |
| SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */ |
| return FALSE; |
| } |
| return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData, |
| pdwDataLen); |
| |
| case PUBLICKEYBLOB: |
| if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) { |
| SetLastError(NTE_BAD_KEY); /* FIXME: error code? */ |
| return FALSE; |
| } |
| |
| return crypt_export_public_key(pCryptKey, pbData, pdwDataLen); |
| |
| case PRIVATEKEYBLOB: |
| return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen); |
| |
| case PLAINTEXTKEYBLOB: |
| return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen); |
| |
| default: |
| SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */ |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPExportKey (RSAENH.@) |
| * |
| * Export a key into a binary large object (BLOB). |
| * |
| * PARAMS |
| * hProv [I] Key container from which a key is to be exported. |
| * hKey [I] Key to be exported. |
| * hPubKey [I] Key used to encrypt sensitive BLOB data. |
| * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB. |
| * dwFlags [I] Currently none defined. |
| * pbData [O] Pointer to a buffer where the BLOB will be written to. |
| * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey, |
| DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen) |
| { |
| CRYPTKEY *pCryptKey; |
| |
| TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p," |
| "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE, |
| pbData, pdwDataLen); |
| } |
| |
| /****************************************************************************** |
| * release_and_install_key [Internal] |
| * |
| * Release an existing key, if present, and replaces it with a new one. |
| * |
| * PARAMS |
| * hProv [I] Key container into which the key is to be imported. |
| * src [I] Key which will replace *dest |
| * dest [I] Points to key to be released and replaced with src |
| * fStoreKey [I] If TRUE, the newly installed key is stored to the registry. |
| */ |
| static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src, |
| HCRYPTKEY *dest, DWORD fStoreKey) |
| { |
| RSAENH_CPDestroyKey(hProv, *dest); |
| copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest); |
| if (fStoreKey) |
| { |
| KEYCONTAINER *pKeyContainer; |
| |
| if ((pKeyContainer = get_key_container(hProv))) |
| { |
| store_key_container_keys(pKeyContainer); |
| store_key_container_permissions(pKeyContainer); |
| } |
| } |
| } |
| |
| /****************************************************************************** |
| * import_private_key [Internal] |
| * |
| * Import a BLOB'ed private key into a key container. |
| * |
| * PARAMS |
| * hProv [I] Key container into which the private key is to be imported. |
| * pbData [I] Pointer to a buffer which holds the private key BLOB. |
| * dwDataLen [I] Length of data in buffer at pbData. |
| * dwFlags [I] One of: |
| * CRYPT_EXPORTABLE: the imported key is marked exportable |
| * fStoreKey [I] If TRUE, the imported key is stored to the registry. |
| * phKey [O] Handle to the imported key. |
| * |
| * |
| * NOTES |
| * Assumes the caller has already checked the BLOBHEADER at pbData to ensure |
| * it's a PRIVATEKEYBLOB. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| static BOOL import_private_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, |
| DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey) |
| { |
| KEYCONTAINER *pKeyContainer; |
| CRYPTKEY *pCryptKey; |
| const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; |
| const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1); |
| BOOL ret; |
| |
| if (dwFlags & CRYPT_IPSEC_HMAC_KEY) |
| { |
| FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n"); |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| if (!(pKeyContainer = get_key_container(hProv))) |
| return FALSE; |
| |
| if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY))) |
| { |
| ERR("datalen %d not long enough for a BLOBHEADER + RSAPUBKEY\n", |
| dwDataLen); |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| if (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) |
| { |
| ERR("unexpected magic %08x\n", pRSAPubKey->magic); |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + |
| (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4)))) |
| { |
| DWORD expectedLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + |
| (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4)); |
| |
| ERR("blob too short for pub key: expect %d, got %d\n", |
| expectedLen, dwDataLen); |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| |
| *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey); |
| if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; |
| setup_key(pCryptKey); |
| ret = import_private_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context, |
| pRSAPubKey->bitlen/8, dwDataLen, pRSAPubKey->pubexp); |
| if (ret) { |
| if (dwFlags & CRYPT_EXPORTABLE) |
| pCryptKey->dwPermissions |= CRYPT_EXPORT; |
| switch (pBlobHeader->aiKeyAlg) |
| { |
| case AT_SIGNATURE: |
| case CALG_RSA_SIGN: |
| TRACE("installing signing key\n"); |
| release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair, |
| fStoreKey); |
| break; |
| case AT_KEYEXCHANGE: |
| case CALG_RSA_KEYX: |
| TRACE("installing key exchange key\n"); |
| release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair, |
| fStoreKey); |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /****************************************************************************** |
| * import_public_key [Internal] |
| * |
| * Import a BLOB'ed public key. |
| * |
| * PARAMS |
| * hProv [I] A CSP. |
| * pbData [I] Pointer to a buffer which holds the public key BLOB. |
| * dwDataLen [I] Length of data in buffer at pbData. |
| * dwFlags [I] One of: |
| * CRYPT_EXPORTABLE: the imported key is marked exportable |
| * phKey [O] Handle to the imported key. |
| * |
| * |
| * NOTES |
| * Assumes the caller has already checked the BLOBHEADER at pbData to ensure |
| * it's a PUBLICKEYBLOB. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| static BOOL import_public_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, |
| DWORD dwFlags, HCRYPTKEY *phKey) |
| { |
| CRYPTKEY *pCryptKey; |
| const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; |
| const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1); |
| ALG_ID algID; |
| BOOL ret; |
| |
| if (dwFlags & CRYPT_IPSEC_HMAC_KEY) |
| { |
| FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n"); |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) || |
| (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) || |
| (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3))) |
| { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| |
| /* Since this is a public key blob, only the public key is |
| * available, so only signature verification is possible. |
| */ |
| algID = pBlobHeader->aiKeyAlg; |
| *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey); |
| if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; |
| setup_key(pCryptKey); |
| ret = import_public_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context, |
| pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp); |
| if (ret) { |
| if (dwFlags & CRYPT_EXPORTABLE) |
| pCryptKey->dwPermissions |= CRYPT_EXPORT; |
| } |
| return ret; |
| } |
| |
| /****************************************************************************** |
| * import_symmetric_key [Internal] |
| * |
| * Import a BLOB'ed symmetric key into a key container. |
| * |
| * PARAMS |
| * hProv [I] Key container into which the symmetric key is to be imported. |
| * pbData [I] Pointer to a buffer which holds the symmetric key BLOB. |
| * dwDataLen [I] Length of data in buffer at pbData. |
| * hPubKey [I] Key used to decrypt sensitive BLOB data. |
| * dwFlags [I] One of: |
| * CRYPT_EXPORTABLE: the imported key is marked exportable |
| * phKey [O] Handle to the imported key. |
| * |
| * |
| * NOTES |
| * Assumes the caller has already checked the BLOBHEADER at pbData to ensure |
| * it's a SIMPLEBLOB. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| static BOOL import_symmetric_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, |
| HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey) |
| { |
| CRYPTKEY *pCryptKey, *pPubKey; |
| const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; |
| const ALG_ID *pAlgid = (const ALG_ID*)(pBlobHeader+1); |
| const BYTE *pbKeyStream = (const BYTE*)(pAlgid + 1); |
| BYTE *pbDecrypted; |
| DWORD dwKeyLen; |
| |
| if (dwFlags & CRYPT_IPSEC_HMAC_KEY) |
| { |
| FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n"); |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) || |
| pPubKey->aiAlgid != CALG_RSA_KEYX) |
| { |
| SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */ |
| return FALSE; |
| } |
| |
| if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen) |
| { |
| SetLastError(NTE_BAD_DATA); /* FIXME: error code */ |
| return FALSE; |
| } |
| |
| pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen); |
| if (!pbDecrypted) return FALSE; |
| encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted, |
| RSAENH_DECRYPT); |
| |
| dwKeyLen = RSAENH_MAX_KEY_SIZE; |
| if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) { |
| HeapFree(GetProcessHeap(), 0, pbDecrypted); |
| return FALSE; |
| } |
| |
| *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey); |
| if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) |
| { |
| HeapFree(GetProcessHeap(), 0, pbDecrypted); |
| return FALSE; |
| } |
| memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen); |
| HeapFree(GetProcessHeap(), 0, pbDecrypted); |
| setup_key(pCryptKey); |
| if (dwFlags & CRYPT_EXPORTABLE) |
| pCryptKey->dwPermissions |= CRYPT_EXPORT; |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * import_plaintext_key [Internal] |
| * |
| * Import a plaintext key into a key container. |
| * |
| * PARAMS |
| * hProv [I] Key container into which the symmetric key is to be imported. |
| * pbData [I] Pointer to a buffer which holds the plaintext key BLOB. |
| * dwDataLen [I] Length of data in buffer at pbData. |
| * dwFlags [I] One of: |
| * CRYPT_EXPORTABLE: the imported key is marked exportable |
| * phKey [O] Handle to the imported key. |
| * |
| * |
| * NOTES |
| * Assumes the caller has already checked the BLOBHEADER at pbData to ensure |
| * it's a PLAINTEXTKEYBLOB. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| static BOOL import_plaintext_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, |
| DWORD dwFlags, HCRYPTKEY *phKey) |
| { |
| CRYPTKEY *pCryptKey; |
| const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; |
| const DWORD *pKeyLen = (const DWORD *)(pBlobHeader + 1); |
| const BYTE *pbKeyStream = (const BYTE*)(pKeyLen + 1); |
| |
| if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen) |
| { |
| SetLastError(NTE_BAD_DATA); /* FIXME: error code */ |
| return FALSE; |
| } |
| |
| if (dwFlags & CRYPT_IPSEC_HMAC_KEY) |
| { |
| *phKey = new_key(hProv, CALG_HMAC, 0, &pCryptKey); |
| if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) |
| return FALSE; |
| if (*pKeyLen <= RSAENH_MIN(sizeof(pCryptKey->abKeyValue), RSAENH_HMAC_BLOCK_LEN)) |
| { |
| memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen); |
| pCryptKey->dwKeyLen = *pKeyLen; |
| } |
| else |
| { |
| CRYPT_DATA_BLOB blobHmacKey = { *pKeyLen, (BYTE *)pbKeyStream }; |
| |
| /* In order to initialize an HMAC key, the key material is hashed, |
| * and the output of the hash function is used as the key material. |
| * Unfortunately, the way the Crypto API is designed, we don't know |
| * the hash algorithm yet, so we have to copy the entire key |
| * material. |
| */ |
| if (!copy_data_blob(&pCryptKey->blobHmacKey, &blobHmacKey)) |
| { |
| release_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY); |
| *phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| return FALSE; |
| } |
| } |
| setup_key(pCryptKey); |
| if (dwFlags & CRYPT_EXPORTABLE) |
| pCryptKey->dwPermissions |= CRYPT_EXPORT; |
| } |
| else |
| { |
| *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey); |
| if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) |
| return FALSE; |
| memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen); |
| setup_key(pCryptKey); |
| if (dwFlags & CRYPT_EXPORTABLE) |
| pCryptKey->dwPermissions |= CRYPT_EXPORT; |
| } |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * import_key [Internal] |
| * |
| * Import a BLOB'ed key into a key container, optionally storing the key's |
| * value to the registry. |
| * |
| * PARAMS |
| * hProv [I] Key container into which the key is to be imported. |
| * pbData [I] Pointer to a buffer which holds the BLOB. |
| * dwDataLen [I] Length of data in buffer at pbData. |
| * hPubKey [I] Key used to decrypt sensitive BLOB data. |
| * dwFlags [I] One of: |
| * CRYPT_EXPORTABLE: the imported key is marked exportable |
| * fStoreKey [I] If TRUE, the imported key is stored to the registry. |
| * phKey [O] Handle to the imported key. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| static BOOL import_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey, |
| DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey) |
| { |
| KEYCONTAINER *pKeyContainer; |
| const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; |
| |
| if (!(pKeyContainer = get_key_container(hProv))) |
| return FALSE; |
| |
| if (dwDataLen < sizeof(BLOBHEADER) || |
| pBlobHeader->bVersion != CUR_BLOB_VERSION || |
| pBlobHeader->reserved != 0) |
| { |
| TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion, |
| pBlobHeader->reserved); |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| |
| /* If this is a verify-only context, the key is not persisted regardless of |
| * fStoreKey's original value. |
| */ |
| fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT); |
| TRACE("blob type: %x\n", pBlobHeader->bType); |
| switch (pBlobHeader->bType) |
| { |
| case PRIVATEKEYBLOB: |
| return import_private_key(hProv, pbData, dwDataLen, dwFlags, |
| fStoreKey, phKey); |
| |
| case PUBLICKEYBLOB: |
| return import_public_key(hProv, pbData, dwDataLen, dwFlags, |
| phKey); |
| |
| case SIMPLEBLOB: |
| return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey, |
| dwFlags, phKey); |
| |
| case PLAINTEXTKEYBLOB: |
| return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags, |
| phKey); |
| |
| default: |
| SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */ |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPImportKey (RSAENH.@) |
| * |
| * Import a BLOB'ed key into a key container. |
| * |
| * PARAMS |
| * hProv [I] Key container into which the key is to be imported. |
| * pbData [I] Pointer to a buffer which holds the BLOB. |
| * dwDataLen [I] Length of data in buffer at pbData. |
| * hPubKey [I] Key used to decrypt sensitive BLOB data. |
| * dwFlags [I] One of: |
| * CRYPT_EXPORTABLE: the imported key is marked exportable |
| * phKey [O] Handle to the imported key. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, |
| HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey) |
| { |
| TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n", |
| hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey); |
| |
| return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey); |
| } |
| |
| /****************************************************************************** |
| * CPGenKey (RSAENH.@) |
| * |
| * Generate a key in the key container |
| * |
| * PARAMS |
| * hProv [I] Key container for which a key is to be generated. |
| * Algid [I] Crypto algorithm identifier for the key to be generated. |
| * dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes |
| * phKey [O] Handle to the generated key. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| * |
| * FIXME |
| * Flags currently not considered. |
| * |
| * NOTES |
| * Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE |
| * and AT_SIGNATURE values. |
| */ |
| BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey) |
| { |
| KEYCONTAINER *pKeyContainer; |
| CRYPTKEY *pCryptKey; |
| |
| TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey); |
| |
| if (!(pKeyContainer = get_key_container(hProv))) |
| { |
| /* MSDN: hProv not containing valid context handle */ |
| return FALSE; |
| } |
| |
| switch (Algid) |
| { |
| case AT_SIGNATURE: |
| case CALG_RSA_SIGN: |
| *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey); |
| if (pCryptKey) { |
| new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen); |
| setup_key(pCryptKey); |
| release_and_install_key(hProv, *phKey, |
| &pKeyContainer->hSignatureKeyPair, |
| FALSE); |
| } |
| break; |
| |
| case AT_KEYEXCHANGE: |
| case CALG_RSA_KEYX: |
| *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey); |
| if (pCryptKey) { |
| new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen); |
| setup_key(pCryptKey); |
| release_and_install_key(hProv, *phKey, |
| &pKeyContainer->hKeyExchangeKeyPair, |
| FALSE); |
| } |
| break; |
| |
| case CALG_RC2: |
| case CALG_RC4: |
| case CALG_DES: |
| case CALG_3DES_112: |
| case CALG_3DES: |
| case CALG_AES: |
| case CALG_AES_128: |
| case CALG_AES_192: |
| case CALG_AES_256: |
| case CALG_PCT1_MASTER: |
| case CALG_SSL2_MASTER: |
| case CALG_SSL3_MASTER: |
| case CALG_TLS1_MASTER: |
| *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey); |
| if (pCryptKey) { |
| gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE); |
| switch (Algid) { |
| case CALG_SSL3_MASTER: |
| pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR; |
| pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR; |
| break; |
| |
| case CALG_TLS1_MASTER: |
| pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR; |
| pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR; |
| break; |
| } |
| setup_key(pCryptKey); |
| } |
| break; |
| |
| default: |
| /* MSDN: Algorithm not supported specified by Algid */ |
| SetLastError(NTE_BAD_ALGID); |
| return FALSE; |
| } |
| |
| return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| } |
| |
| /****************************************************************************** |
| * CPGenRandom (RSAENH.@) |
| * |
| * Generate a random byte stream. |
| * |
| * PARAMS |
| * hProv [I] Key container that is used to generate random bytes. |
| * dwLen [I] Specifies the number of requested random data bytes. |
| * pbBuffer [O] Random bytes will be stored here. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| */ |
| BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer) |
| { |
| TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| /* MSDN: hProv not containing valid context handle */ |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| return gen_rand_impl(pbBuffer, dwLen); |
| } |
| |
| /****************************************************************************** |
| * CPGetHashParam (RSAENH.@) |
| * |
| * Query parameters of an hash object. |
| * |
| * PARAMS |
| * hProv [I] The kea container, which the hash belongs to. |
| * hHash [I] The hash object that is to be queried. |
| * dwParam [I] Specifies the parameter that is to be queried. |
| * pbData [I] Pointer to the buffer where the parameter value will be stored. |
| * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value. |
| * dwFlags [I] None currently defined. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| * |
| * NOTES |
| * Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be |
| * finalized if HP_HASHVALUE is queried. |
| */ |
| BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, |
| DWORD *pdwDataLen, DWORD dwFlags) |
| { |
| CRYPTHASH *pCryptHash; |
| |
| TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n", |
| hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (dwFlags) |
| { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, |
| (OBJECTHDR**)&pCryptHash)) |
| { |
| SetLastError(NTE_BAD_HASH); |
| return FALSE; |
| } |
| |
| if (!pdwDataLen) |
| { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| |
| switch (dwParam) |
| { |
| case HP_ALGID: |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->aiAlgid, |
| sizeof(ALG_ID)); |
| |
| case HP_HASHSIZE: |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->dwHashSize, |
| sizeof(DWORD)); |
| |
| case HP_HASHVAL: |
| if (pCryptHash->aiAlgid == CALG_TLS1PRF) { |
| return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel, |
| &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen); |
| } |
| |
| if ( pbData == NULL ) { |
| *pdwDataLen = pCryptHash->dwHashSize; |
| return TRUE; |
| } |
| |
| if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED)) |
| { |
| finalize_hash(pCryptHash); |
| pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED; |
| } |
| |
| return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue, |
| pCryptHash->dwHashSize); |
| |
| default: |
| SetLastError(NTE_BAD_TYPE); |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPSetKeyParam (RSAENH.@) |
| * |
| * Set a parameter of a key object |
| * |
| * PARAMS |
| * hProv [I] The key container to which the key belongs. |
| * hKey [I] The key for which a parameter is to be set. |
| * dwParam [I] Parameter type. See Notes. |
| * pbData [I] Pointer to the parameter value. |
| * dwFlags [I] Currently none defined. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| * |
| * NOTES: |
| * Defined dwParam types are: |
| * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB. |
| * - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's) |
| * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, |
| * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC |
| * - KP_IV: Initialization vector |
| */ |
| BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, |
| DWORD dwFlags) |
| { |
| CRYPTKEY *pCryptKey; |
| |
| TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey, |
| dwParam, pbData, dwFlags); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (dwFlags) { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| switch (dwParam) { |
| case KP_PADDING: |
| /* The MS providers only support PKCS5_PADDING */ |
| if (*(DWORD *)pbData != PKCS5_PADDING) { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| return TRUE; |
| |
| case KP_MODE: |
| pCryptKey->dwMode = *(DWORD*)pbData; |
| return TRUE; |
| |
| case KP_MODE_BITS: |
| pCryptKey->dwModeBits = *(DWORD*)pbData; |
| return TRUE; |
| |
| case KP_PERMISSIONS: |
| { |
| DWORD perms = *(DWORD *)pbData; |
| |
| if ((perms & CRYPT_EXPORT) && |
| !(pCryptKey->dwPermissions & CRYPT_EXPORT)) |
| { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| else if (!(perms & CRYPT_EXPORT) && |
| (pCryptKey->dwPermissions & CRYPT_EXPORT)) |
| { |
| /* Clearing the export permission appears to be ignored, |
| * see tests. |
| */ |
| perms |= CRYPT_EXPORT; |
| } |
| pCryptKey->dwPermissions = perms; |
| return TRUE; |
| } |
| |
| case KP_IV: |
| memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen); |
| setup_key(pCryptKey); |
| return TRUE; |
| |
| case KP_SALT: |
| switch (pCryptKey->aiAlgid) { |
| case CALG_RC2: |
| case CALG_RC4: |
| { |
| KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv); |
| if (!pbData) |
| { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| /* MSDN: the base provider always sets eleven bytes of |
| * salt value. |
| */ |
| memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, |
| pbData, 11); |
| pCryptKey->dwSaltLen = 11; |
| setup_key(pCryptKey); |
| /* After setting the salt value if the provider is not base or |
| * strong the salt length will be reset. */ |
| if (pKeyContainer->dwPersonality != RSAENH_PERSONALITY_BASE && |
| pKeyContainer->dwPersonality != RSAENH_PERSONALITY_STRONG) |
| pCryptKey->dwSaltLen = 0; |
| break; |
| } |
| default: |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| return TRUE; |
| |
| case KP_SALT_EX: |
| { |
| CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData; |
| |
| /* salt length can't be greater than 184 bits = 24 bytes */ |
| if (blob->cbData > 24) |
| { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData, |
| blob->cbData); |
| pCryptKey->dwSaltLen = blob->cbData; |
| setup_key(pCryptKey); |
| return TRUE; |
| } |
| |
| case KP_EFFECTIVE_KEYLEN: |
| switch (pCryptKey->aiAlgid) { |
| case CALG_RC2: |
| { |
| DWORD keylen, deflen; |
| BOOL ret = TRUE; |
| KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv); |
| |
| if (!pbData) |
| { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| keylen = *(DWORD *)pbData; |
| if (!keylen || keylen > 1024) |
| { |
| SetLastError(NTE_BAD_DATA); |
| return FALSE; |
| } |
| |
| /* |
| * The Base provider will force the key length to default |
| * and set an error state if a key length different from |
| * the default is tried. |
| */ |
| deflen = aProvEnumAlgsEx[pKeyContainer->dwPersonality]->dwDefaultLen; |
| if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_BASE |
| && keylen != deflen) |
| { |
| keylen = deflen; |
| SetLastError(NTE_BAD_DATA); |
| ret = FALSE; |
| } |
| pCryptKey->dwEffectiveKeyLen = keylen; |
| setup_key(pCryptKey); |
| return ret; |
| } |
| default: |
| SetLastError(NTE_BAD_TYPE); |
| return FALSE; |
| } |
| return TRUE; |
| |
| case KP_SCHANNEL_ALG: |
| switch (((PSCHANNEL_ALG)pbData)->dwUse) { |
| case SCHANNEL_ENC_KEY: |
| memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG)); |
| break; |
| |
| case SCHANNEL_MAC_KEY: |
| memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG)); |
| break; |
| |
| default: |
| SetLastError(NTE_FAIL); /* FIXME: error code */ |
| return FALSE; |
| } |
| return TRUE; |
| |
| case KP_CLIENT_RANDOM: |
| return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData); |
| |
| case KP_SERVER_RANDOM: |
| return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData); |
| |
| default: |
| SetLastError(NTE_BAD_TYPE); |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPGetKeyParam (RSAENH.@) |
| * |
| * Query a key parameter. |
| * |
| * PARAMS |
| * hProv [I] The key container, which the key belongs to. |
| * hHash [I] The key object that is to be queried. |
| * dwParam [I] Specifies the parameter that is to be queried. |
| * pbData [I] Pointer to the buffer where the parameter value will be stored. |
| * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value. |
| * dwFlags [I] None currently defined. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| * |
| * NOTES |
| * Defined dwParam types are: |
| * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB. |
| * - KP_MODE_BITS: Shift width for cipher feedback mode. |
| * (Currently ignored by MS CSP's - always eight) |
| * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, |
| * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC |
| * - KP_IV: Initialization vector. |
| * - KP_KEYLEN: Bitwidth of the key. |
| * - KP_BLOCKLEN: Size of a block cipher block. |
| * - KP_SALT: Salt value. |
| */ |
| BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, |
| DWORD *pdwDataLen, DWORD dwFlags) |
| { |
| CRYPTKEY *pCryptKey; |
| DWORD dwValue; |
| |
| TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n", |
| hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (dwFlags) { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| switch (dwParam) |
| { |
| case KP_IV: |
| return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector, |
| pCryptKey->dwBlockLen); |
| |
| case KP_SALT: |
| switch (pCryptKey->aiAlgid) { |
| case CALG_RC2: |
| case CALG_RC4: |
| return copy_param(pbData, pdwDataLen, |
| &pCryptKey->abKeyValue[pCryptKey->dwKeyLen], |
| pCryptKey->dwSaltLen); |
| default: |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| case KP_PADDING: |
| dwValue = PKCS5_PADDING; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD)); |
| |
| case KP_KEYLEN: |
| dwValue = pCryptKey->dwKeyLen << 3; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD)); |
| |
| case KP_EFFECTIVE_KEYLEN: |
| if (pCryptKey->dwEffectiveKeyLen) |
| dwValue = pCryptKey->dwEffectiveKeyLen; |
| else |
| dwValue = pCryptKey->dwKeyLen << 3; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD)); |
| |
| case KP_BLOCKLEN: |
| dwValue = pCryptKey->dwBlockLen << 3; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD)); |
| |
| case KP_MODE: |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwMode, sizeof(DWORD)); |
| |
| case KP_MODE_BITS: |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwModeBits, |
| sizeof(DWORD)); |
| |
| case KP_PERMISSIONS: |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwPermissions, |
| sizeof(DWORD)); |
| |
| case KP_ALGID: |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD)); |
| |
| default: |
| SetLastError(NTE_BAD_TYPE); |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPGetProvParam (RSAENH.@) |
| * |
| * Query a CSP parameter. |
| * |
| * PARAMS |
| * hProv [I] The key container that is to be queried. |
| * dwParam [I] Specifies the parameter that is to be queried. |
| * pbData [I] Pointer to the buffer where the parameter value will be stored. |
| * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value. |
| * dwFlags [I] CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}). |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| * NOTES: |
| * Defined dwParam types: |
| * - PP_CONTAINER: Name of the key container. |
| * - PP_NAME: Name of the cryptographic service provider. |
| * - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits. |
| * - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits. |
| * - PP_ENUMALGS{_EX}: Query provider capabilities. |
| * - PP_KEYSET_SEC_DESCR: Retrieve security descriptor on container. |
| */ |
| BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, |
| DWORD *pdwDataLen, DWORD dwFlags) |
| { |
| KEYCONTAINER *pKeyContainer; |
| PROV_ENUMALGS provEnumalgs; |
| DWORD dwTemp; |
| HKEY hKey; |
| |
| /* This is for dwParam PP_CRYPT_COUNT_KEY_USE. |
| * IE6 SP1 asks for it in the 'About' dialog. |
| * Returning this BLOB seems to satisfy IE. The marked 0x00 seem |
| * to be 'don't care's. If you know anything more specific about |
| * this provider parameter, please report to wine-devel@winehq.org */ |
| static const BYTE abWTF[96] = { |
| 0xb0, 0x25, 0x63, 0x86, 0x9c, 0xab, 0xb6, 0x37, |
| 0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b, |
| 0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82, |
| 0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde, |
| 0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8, |
| 0x12, 0x1e, 0xd4, 0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01, |
| 0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33, |
| 0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d, |
| 0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05, |
| 0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa, |
| 0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03, |
| 0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca |
| }; |
| |
| TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n", |
| hProv, dwParam, pbData, pdwDataLen, dwFlags); |
| |
| if (!pdwDataLen) { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| |
| if (!(pKeyContainer = get_key_container(hProv))) |
| { |
| /* MSDN: hProv not containing valid context handle */ |
| return FALSE; |
| } |
| |
| switch (dwParam) |
| { |
| case PP_CONTAINER: |
| case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */ |
| return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szName, |
| strlen(pKeyContainer->szName)+1); |
| |
| case PP_NAME: |
| return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szProvName, |
| strlen(pKeyContainer->szProvName)+1); |
| |
| case PP_PROVTYPE: |
| dwTemp = PROV_RSA_FULL; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); |
| |
| case PP_KEYSPEC: |
| dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); |
| |
| case PP_KEYSET_TYPE: |
| dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); |
| |
| case PP_KEYSTORAGE: |
| dwTemp = CRYPT_SEC_DESCR; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); |
| |
| case PP_SIG_KEYSIZE_INC: |
| case PP_KEYX_KEYSIZE_INC: |
| dwTemp = 8; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); |
| |
| case PP_IMPTYPE: |
| dwTemp = CRYPT_IMPL_SOFTWARE; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); |
| |
| case PP_VERSION: |
| dwTemp = 0x00000200; |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); |
| |
| case PP_ENUMCONTAINERS: |
| if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0; |
| |
| if (!pbData) { |
| *pdwDataLen = (DWORD)MAX_PATH + 1; |
| return TRUE; |
| } |
| |
| if (!open_container_key("", dwFlags, KEY_READ, &hKey)) |
| { |
| SetLastError(ERROR_NO_MORE_ITEMS); |
| return FALSE; |
| } |
| |
| dwTemp = *pdwDataLen; |
| switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp, |
| NULL, NULL, NULL, NULL)) |
| { |
| case ERROR_MORE_DATA: |
| *pdwDataLen = (DWORD)MAX_PATH + 1; |
| |
| case ERROR_SUCCESS: |
| pKeyContainer->dwEnumContainersCtr++; |
| RegCloseKey(hKey); |
| return TRUE; |
| |
| case ERROR_NO_MORE_ITEMS: |
| default: |
| SetLastError(ERROR_NO_MORE_ITEMS); |
| RegCloseKey(hKey); |
| return FALSE; |
| } |
| |
| case PP_ENUMALGS: |
| case PP_ENUMALGS_EX: |
| if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) || |
| (!aProvEnumAlgsEx[pKeyContainer->dwPersonality] |
| [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) && |
| ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST)) |
| { |
| SetLastError(ERROR_NO_MORE_ITEMS); |
| return FALSE; |
| } |
| |
| if (dwParam == PP_ENUMALGS) { |
| if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS))) |
| pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? |
| 0 : pKeyContainer->dwEnumAlgsCtr+1; |
| |
| provEnumalgs.aiAlgid = aProvEnumAlgsEx |
| [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid; |
| provEnumalgs.dwBitLen = aProvEnumAlgsEx |
| [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen; |
| provEnumalgs.dwNameLen = aProvEnumAlgsEx |
| [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen; |
| memcpy(provEnumalgs.szName, aProvEnumAlgsEx |
| [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName, |
| 20*sizeof(CHAR)); |
| |
| return copy_param(pbData, pdwDataLen, (const BYTE*)&provEnumalgs, |
| sizeof(PROV_ENUMALGS)); |
| } else { |
| if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX))) |
| pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? |
| 0 : pKeyContainer->dwEnumAlgsCtr+1; |
| |
| return copy_param(pbData, pdwDataLen, |
| (const BYTE*)&aProvEnumAlgsEx |
| [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr], |
| sizeof(PROV_ENUMALGS_EX)); |
| } |
| |
| case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */ |
| return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF)); |
| |
| case PP_KEYSET_SEC_DESCR: |
| { |
| SECURITY_DESCRIPTOR *sd; |
| DWORD err, len, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET); |
| |
| if (!open_container_key(pKeyContainer->szName, flags, KEY_READ, &hKey)) |
| { |
| SetLastError(NTE_BAD_KEYSET); |
| return FALSE; |
| } |
| |
| err = GetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, NULL, NULL, NULL, NULL, (void **)&sd); |
| RegCloseKey(hKey); |
| if (err) |
| { |
| SetLastError(err); |
| return FALSE; |
| } |
| |
| len = GetSecurityDescriptorLength(sd); |
| if (*pdwDataLen >= len) memcpy(pbData, sd, len); |
| else SetLastError(ERROR_INSUFFICIENT_BUFFER); |
| *pdwDataLen = len; |
| |
| LocalFree(sd); |
| return TRUE; |
| } |
| |
| default: |
| /* MSDN: Unknown parameter number in dwParam */ |
| SetLastError(NTE_BAD_TYPE); |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPDeriveKey (RSAENH.@) |
| * |
| * Derives a key from a hash value. |
| * |
| * PARAMS |
| * hProv [I] Key container for which a key is to be generated. |
| * Algid [I] Crypto algorithm identifier for the key to be generated. |
| * hBaseData [I] Hash from whose value the key will be derived. |
| * dwFlags [I] See Notes. |
| * phKey [O] The generated key. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| * |
| * NOTES |
| * Defined flags: |
| * - CRYPT_EXPORTABLE: Key can be exported. |
| * - CRYPT_NO_SALT: No salt is used for 40 bit keys. |
| * - CRYPT_CREATE_SALT: Use remaining bits as salt value. |
| */ |
| BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData, |
| DWORD dwFlags, HCRYPTKEY *phKey) |
| { |
| CRYPTKEY *pCryptKey, *pMasterKey; |
| CRYPTHASH *pCryptHash; |
| BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2]; |
| DWORD dwLen; |
| |
| TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid, |
| hBaseData, dwFlags, phKey); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH, |
| (OBJECTHDR**)&pCryptHash)) |
| { |
| SetLastError(NTE_BAD_HASH); |
| return FALSE; |
| } |
| |
| if (!phKey) |
| { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| |
| switch (GET_ALG_CLASS(Algid)) |
| { |
| case ALG_CLASS_DATA_ENCRYPT: |
| { |
| int need_padding, copy_len; |
| *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey); |
| if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; |
| |
| /* |
| * We derive the key material from the hash. |
| * If the hash value is not large enough for the claimed key, we have to construct |
| * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey. |
| */ |
| dwLen = RSAENH_MAX_HASH_SIZE; |
| RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0); |
| |
| /* |
| * The usage of padding seems to vary from algorithm to algorithm. |
| * For now the only different case found was for AES with 128 bit key. |
| */ |
| switch(Algid) |
| { |
| case CALG_AES_128: |
| /* To reduce the chance of regressions we will only deviate |
| * from the old behavior for the tested hash lengths */ |
| if (dwLen == 16 || dwLen == 20) |
| { |
| need_padding = 1; |
| break; |
| } |
| default: |
| need_padding = dwLen < pCryptKey->dwKeyLen; |
| } |
| |
| copy_len = pCryptKey->dwKeyLen; |
| if (need_padding) |
| { |
| BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN]; |
| BYTE old_hashval[RSAENH_MAX_HASH_SIZE]; |
| DWORD i; |
| |
| memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE); |
| |
| for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) { |
| pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0); |
| pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0); |
| } |
| |
| init_hash(pCryptHash); |
| update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN); |
| finalize_hash(pCryptHash); |
| memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize); |
| |
| init_hash(pCryptHash); |
| update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN); |
| finalize_hash(pCryptHash); |
| memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue, |
| pCryptHash->dwHashSize); |
| |
| memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE); |
| } |
| /* |
| * Padding was not required, we have more hash than needed. |
| * Do we need to use the remaining hash as salt? |
| */ |
| else if((dwFlags & CRYPT_CREATE_SALT) && |
| (Algid == CALG_RC2 || Algid == CALG_RC4)) |
| { |
| copy_len += pCryptKey->dwSaltLen; |
| } |
| |
| memcpy(pCryptKey->abKeyValue, abHashValue, |
| RSAENH_MIN(copy_len, sizeof(pCryptKey->abKeyValue))); |
| break; |
| } |
| case ALG_CLASS_MSG_ENCRYPT: |
| if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, |
| (OBJECTHDR**)&pMasterKey)) |
| { |
| SetLastError(NTE_FAIL); /* FIXME error code */ |
| return FALSE; |
| } |
| |
| switch (Algid) |
| { |
| /* See RFC 2246, chapter 6.3 Key calculation */ |
| case CALG_SCHANNEL_ENC_KEY: |
| if (!pMasterKey->siSChannelInfo.saEncAlg.Algid || |
| !pMasterKey->siSChannelInfo.saEncAlg.cBits) |
| { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid, |
| MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits), |
| &pCryptKey); |
| if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; |
| memcpy(pCryptKey->abKeyValue, |
| pCryptHash->abHashValue + ( |
| 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) + |
| ((dwFlags & CRYPT_SERVER) ? |
| (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)), |
| pMasterKey->siSChannelInfo.saEncAlg.cBits / 8); |
| memcpy(pCryptKey->abInitVector, |
| pCryptHash->abHashValue + ( |
| 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) + |
| 2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) + |
| ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)), |
| pCryptKey->dwBlockLen); |
| break; |
| |
| case CALG_SCHANNEL_MAC_KEY: |
| *phKey = new_key(hProv, Algid, |
| MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits), |
| &pCryptKey); |
| if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; |
| memcpy(pCryptKey->abKeyValue, |
| pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ? |
| pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0), |
| pMasterKey->siSChannelInfo.saMACAlg.cBits / 8); |
| break; |
| |
| default: |
| SetLastError(NTE_BAD_ALGID); |
| return FALSE; |
| } |
| break; |
| |
| default: |
| SetLastError(NTE_BAD_ALGID); |
| return FALSE; |
| } |
| |
| setup_key(pCryptKey); |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * CPGetUserKey (RSAENH.@) |
| * |
| * Returns a handle to the user's private key-exchange- or signature-key. |
| * |
| * PARAMS |
| * hProv [I] The key container from which a user key is requested. |
| * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE |
| * phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| * |
| * NOTE |
| * A newly created key container does not contain private user key. Create them with CPGenKey. |
| */ |
| BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey) |
| { |
| KEYCONTAINER *pKeyContainer; |
| |
| TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey); |
| |
| if (!(pKeyContainer = get_key_container(hProv))) |
| { |
| /* MSDN: hProv not containing valid context handle */ |
| return FALSE; |
| } |
| |
| switch (dwKeySpec) |
| { |
| case AT_KEYEXCHANGE: |
| copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, |
| phUserKey); |
| break; |
| |
| case AT_SIGNATURE: |
| copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, |
| phUserKey); |
| break; |
| |
| default: |
| *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| } |
| |
| if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) |
| { |
| /* MSDN: dwKeySpec parameter specifies nonexistent key */ |
| SetLastError(NTE_NO_KEY); |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * CPHashData (RSAENH.@) |
| * |
| * Updates a hash object with the given data. |
| * |
| * PARAMS |
| * hProv [I] Key container to which the hash object belongs. |
| * hHash [I] Hash object which is to be updated. |
| * pbData [I] Pointer to data with which the hash object is to be updated. |
| * dwDataLen [I] Length of the data. |
| * dwFlags [I] Currently none defined. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| * |
| * NOTES |
| * The actual hash value is queried with CPGetHashParam, which will finalize |
| * the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE. |
| */ |
| BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbData, |
| DWORD dwDataLen, DWORD dwFlags) |
| { |
| CRYPTHASH *pCryptHash; |
| |
| TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n", |
| hProv, hHash, pbData, dwDataLen, dwFlags); |
| |
| if (dwFlags & ~CRYPT_USERDATA) |
| { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, |
| (OBJECTHDR**)&pCryptHash)) |
| { |
| SetLastError(NTE_BAD_HASH); |
| return FALSE; |
| } |
| |
| if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5) |
| { |
| SetLastError(NTE_BAD_ALGID); |
| return FALSE; |
| } |
| |
| if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING) |
| { |
| SetLastError(NTE_BAD_HASH_STATE); |
| return FALSE; |
| } |
| |
| update_hash(pCryptHash, pbData, dwDataLen); |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * CPHashSessionKey (RSAENH.@) |
| * |
| * Updates a hash object with the binary representation of a symmetric key. |
| * |
| * PARAMS |
| * hProv [I] Key container to which the hash object belongs. |
| * hHash [I] Hash object which is to be updated. |
| * hKey [I] The symmetric key, whose binary value will be added to the hash. |
| * dwFlags [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| */ |
| BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey, |
| DWORD dwFlags) |
| { |
| BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp; |
| CRYPTKEY *pKey; |
| DWORD i; |
| |
| TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags); |
| |
| if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) || |
| (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| if (dwFlags & ~CRYPT_LITTLE_ENDIAN) { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen); |
| if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) { |
| for (i=0; i<pKey->dwKeyLen/2; i++) { |
| bTemp = abKeyValue[i]; |
| abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1]; |
| abKeyValue[pKey->dwKeyLen-i-1] = bTemp; |
| } |
| } |
| |
| return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0); |
| } |
| |
| /****************************************************************************** |
| * CPReleaseContext (RSAENH.@) |
| * |
| * Release a key container. |
| * |
| * PARAMS |
| * hProv [I] Key container to be released. |
| * dwFlags [I] Currently none defined. |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| */ |
| BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags) |
| { |
| TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags); |
| |
| if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| /* MSDN: hProv not containing valid context handle */ |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (dwFlags) { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * CPSetHashParam (RSAENH.@) |
| * |
| * Set a parameter of a hash object |
| * |
| * PARAMS |
| * hProv [I] The key container to which the key belongs. |
| * hHash [I] The hash object for which a parameter is to be set. |
| * dwParam [I] Parameter type. See Notes. |
| * pbData [I] Pointer to the parameter value. |
| * dwFlags [I] Currently none defined. |
| * |
| * RETURNS |
| * Success: TRUE. |
| * Failure: FALSE. |
| * |
| * NOTES |
| * Currently only the HP_HMAC_INFO dwParam type is defined. |
| * The HMAC_INFO struct will be deep copied into the hash object. |
| * See Internet RFC 2104 for details on the HMAC algorithm. |
| */ |
| BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, |
| BYTE *pbData, DWORD dwFlags) |
| { |
| CRYPTHASH *pCryptHash; |
| CRYPTKEY *pCryptKey; |
| DWORD i; |
| |
| TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", |
| hProv, hHash, dwParam, pbData, dwFlags); |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (dwFlags) { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, |
| (OBJECTHDR**)&pCryptHash)) |
| { |
| SetLastError(NTE_BAD_HASH); |
| return FALSE; |
| } |
| |
| switch (dwParam) { |
| case HP_HMAC_INFO: |
| free_hmac_info(pCryptHash->pHMACInfo); |
| if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE; |
| |
| if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, |
| (OBJECTHDR**)&pCryptKey)) |
| { |
| SetLastError(NTE_FAIL); /* FIXME: correct error code? */ |
| return FALSE; |
| } |
| |
| if (pCryptKey->aiAlgid == CALG_HMAC && !pCryptKey->dwKeyLen) { |
| HCRYPTHASH hKeyHash; |
| DWORD keyLen; |
| |
| if (!RSAENH_CPCreateHash(hProv, ((PHMAC_INFO)pbData)->HashAlgid, 0, 0, |
| &hKeyHash)) |
| return FALSE; |
| if (!RSAENH_CPHashData(hProv, hKeyHash, pCryptKey->blobHmacKey.pbData, |
| pCryptKey->blobHmacKey.cbData, 0)) |
| { |
| RSAENH_CPDestroyHash(hProv, hKeyHash); |
| return FALSE; |
| } |
| keyLen = sizeof(pCryptKey->abKeyValue); |
| if (!RSAENH_CPGetHashParam(hProv, hKeyHash, HP_HASHVAL, pCryptKey->abKeyValue, |
| &keyLen, 0)) |
| { |
| RSAENH_CPDestroyHash(hProv, hKeyHash); |
| return FALSE; |
| } |
| pCryptKey->dwKeyLen = keyLen; |
| RSAENH_CPDestroyHash(hProv, hKeyHash); |
| } |
| for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) { |
| pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i]; |
| } |
| for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) { |
| pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i]; |
| } |
| |
| init_hash(pCryptHash); |
| return TRUE; |
| |
| case HP_HASHVAL: |
| memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize); |
| pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED; |
| return TRUE; |
| |
| case HP_TLS1PRF_SEED: |
| return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData); |
| |
| case HP_TLS1PRF_LABEL: |
| return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData); |
| |
| default: |
| SetLastError(NTE_BAD_TYPE); |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPSetProvParam (RSAENH.@) |
| */ |
| BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags) |
| { |
| KEYCONTAINER *pKeyContainer; |
| HKEY hKey; |
| |
| TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, dwParam, pbData, dwFlags); |
| |
| if (!(pKeyContainer = get_key_container(hProv))) |
| return FALSE; |
| |
| switch (dwParam) |
| { |
| case PP_KEYSET_SEC_DESCR: |
| { |
| SECURITY_DESCRIPTOR *sd = (SECURITY_DESCRIPTOR *)pbData; |
| DWORD err, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET); |
| BOOL def, present; |
| REGSAM access = WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY; |
| PSID owner = NULL, group = NULL; |
| PACL dacl = NULL, sacl = NULL; |
| |
| if (!open_container_key(pKeyContainer->szName, flags, access, &hKey)) |
| { |
| SetLastError(NTE_BAD_KEYSET); |
| return FALSE; |
| } |
| |
| if ((dwFlags & OWNER_SECURITY_INFORMATION && !GetSecurityDescriptorOwner(sd, &owner, &def)) || |
| (dwFlags & GROUP_SECURITY_INFORMATION && !GetSecurityDescriptorGroup(sd, &group, &def)) || |
| (dwFlags & DACL_SECURITY_INFORMATION && !GetSecurityDescriptorDacl(sd, &present, &dacl, &def)) || |
| (dwFlags & SACL_SECURITY_INFORMATION && !GetSecurityDescriptorSacl(sd, &present, &sacl, &def))) |
| { |
| RegCloseKey(hKey); |
| return FALSE; |
| } |
| |
| err = SetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, owner, group, dacl, sacl); |
| RegCloseKey(hKey); |
| if (err) |
| { |
| SetLastError(err); |
| return FALSE; |
| } |
| return TRUE; |
| } |
| default: |
| FIXME("unimplemented parameter %08x\n", dwParam); |
| return FALSE; |
| } |
| } |
| |
| /****************************************************************************** |
| * CPSignHash (RSAENH.@) |
| * |
| * Sign a hash object |
| * |
| * PARAMS |
| * hProv [I] The key container, to which the hash object belongs. |
| * hHash [I] The hash object to be signed. |
| * dwKeySpec [I] AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature. |
| * sDescription [I] Should be NULL for security reasons. |
| * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature. |
| * pbSignature [O] Buffer, to which the signature will be stored. May be NULL to query SigLen. |
| * pdwSigLen [I/O] Size of the buffer (in), Length of the signature (out) |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| */ |
| BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec, |
| LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature, |
| DWORD *pdwSigLen) |
| { |
| HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE; |
| CRYPTKEY *pCryptKey; |
| DWORD dwHashLen; |
| BYTE abHashValue[RSAENH_MAX_HASH_SIZE]; |
| ALG_ID aiAlgid; |
| BOOL ret = FALSE; |
| |
| TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, " |
| "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription), |
| dwFlags, pbSignature, pdwSigLen); |
| |
| if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE; |
| |
| if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY, |
| (OBJECTHDR**)&pCryptKey)) |
| { |
| SetLastError(NTE_NO_KEY); |
| goto out; |
| } |
| |
| if (!pbSignature) { |
| *pdwSigLen = pCryptKey->dwKeyLen; |
| ret = TRUE; |
| goto out; |
| } |
| if (pCryptKey->dwKeyLen > *pdwSigLen) |
| { |
| SetLastError(ERROR_MORE_DATA); |
| *pdwSigLen = pCryptKey->dwKeyLen; |
| goto out; |
| } |
| *pdwSigLen = pCryptKey->dwKeyLen; |
| |
| if (sDescription) { |
| if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription, |
| (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0)) |
| { |
| goto out; |
| } |
| } |
| |
| dwHashLen = sizeof(DWORD); |
| if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out; |
| |
| dwHashLen = RSAENH_MAX_HASH_SIZE; |
| if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out; |
| |
| |
| if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) { |
| goto out; |
| } |
| |
| ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT); |
| out: |
| RSAENH_CPDestroyKey(hProv, hCryptKey); |
| return ret; |
| } |
| |
| /****************************************************************************** |
| * CPVerifySignature (RSAENH.@) |
| * |
| * Verify the signature of a hash object. |
| * |
| * PARAMS |
| * hProv [I] The key container, to which the hash belongs. |
| * hHash [I] The hash for which the signature is verified. |
| * pbSignature [I] The binary signature. |
| * dwSigLen [I] Length of the signature BLOB. |
| * hPubKey [I] Public key used to verify the signature. |
| * sDescription [I] Should be NULL for security reasons. |
| * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature. |
| * |
| * RETURNS |
| * Success: TRUE (Signature is valid) |
| * Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid) |
| */ |
| BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbSignature, |
| DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription, |
| DWORD dwFlags) |
| { |
| BYTE *pbConstructed = NULL, *pbDecrypted = NULL; |
| CRYPTKEY *pCryptKey; |
| DWORD dwHashLen; |
| ALG_ID aiAlgid; |
| BYTE abHashValue[RSAENH_MAX_HASH_SIZE]; |
| BOOL res = FALSE; |
| |
| TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, " |
| "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription), |
| dwFlags); |
| |
| if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) { |
| SetLastError(NTE_BAD_FLAGS); |
| return FALSE; |
| } |
| |
| if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) |
| { |
| SetLastError(NTE_BAD_UID); |
| return FALSE; |
| } |
| |
| if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, |
| (OBJECTHDR**)&pCryptKey)) |
| { |
| SetLastError(NTE_BAD_KEY); |
| return FALSE; |
| } |
| |
| /* in Microsoft implementation, the signature length is checked before |
| * the signature pointer. |
| */ |
| if (dwSigLen != pCryptKey->dwKeyLen) |
| { |
| SetLastError(NTE_BAD_SIGNATURE); |
| return FALSE; |
| } |
| |
| if (!hHash || !pbSignature) |
| { |
| SetLastError(ERROR_INVALID_PARAMETER); |
| return FALSE; |
| } |
| |
| if (sDescription) { |
| if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription, |
| (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0)) |
| { |
| return FALSE; |
| } |
| } |
| |
| dwHashLen = sizeof(DWORD); |
| if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE; |
| |
| dwHashLen = RSAENH_MAX_HASH_SIZE; |
| if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE; |
| |
| pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen); |
| if (!pbConstructed) { |
| SetLastError(NTE_NO_MEMORY); |
| goto cleanup; |
| } |
| |
| pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen); |
| if (!pbDecrypted) { |
| SetLastError(NTE_NO_MEMORY); |
| goto cleanup; |
| } |
| |
| if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted, |
| RSAENH_DECRYPT)) |
| { |
| goto cleanup; |
| } |
| |
| if (build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags) && |
| !memcmp(pbDecrypted, pbConstructed, dwSigLen)) { |
| res = TRUE; |
| goto cleanup; |
| } |
| |
| if (!(dwFlags & CRYPT_NOHASHOID) && |
| build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags|CRYPT_NOHASHOID) && |
| !memcmp(pbDecrypted, pbConstructed, dwSigLen)) { |
| res = TRUE; |
| goto cleanup; |
| } |
| |
| SetLastError(NTE_BAD_SIGNATURE); |
| |
| cleanup: |
| HeapFree(GetProcessHeap(), 0, pbConstructed); |
| HeapFree(GetProcessHeap(), 0, pbDecrypted); |
| return res; |
| } |
| |
| /****************************************************************************** |
| * DllRegisterServer (RSAENH.@) |
| */ |
| HRESULT WINAPI DllRegisterServer(void) |
| { |
| return __wine_register_resources( instance ); |
| } |
| |
| /****************************************************************************** |
| * DllUnregisterServer (RSAENH.@) |
| */ |
| HRESULT WINAPI DllUnregisterServer(void) |
| { |
| return __wine_unregister_resources( instance ); |
| } |