| /*************************************************************************** |
| * lzx.c - LZX decompression routines * |
| * ------------------- * |
| * * |
| * maintainer: Jed Wing <jedwin@ugcs.caltech.edu> * |
| * source: modified lzx.c from cabextract v0.5 * |
| * notes: This file was taken from cabextract v0.5, which was, * |
| * itself, a modified version of the lzx decompression code * |
| * from unlzx. * |
| * * |
| * platforms: In its current incarnation, this file has been tested on * |
| * two different Linux platforms (one, redhat-based, with a * |
| * 2.1.2 glibc and gcc 2.95.x, and the other, Debian, with * |
| * 2.2.4 glibc and both gcc 2.95.4 and gcc 3.0.2). Both were * |
| * Intel x86 compatible machines. * |
| ***************************************************************************/ |
| |
| /*************************************************************************** |
| * |
| * Copyright(C) Stuart Caie |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA |
| * |
| ***************************************************************************/ |
| |
| #include "lzx.h" |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "windef.h" |
| #include "winbase.h" |
| |
| /* sized types */ |
| typedef unsigned char UBYTE; /* 8 bits exactly */ |
| typedef unsigned short UWORD; /* 16 bits (or more) */ |
| |
| /* some constants defined by the LZX specification */ |
| #define LZX_MIN_MATCH (2) |
| #define LZX_MAX_MATCH (257) |
| #define LZX_NUM_CHARS (256) |
| #define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */ |
| #define LZX_BLOCKTYPE_VERBATIM (1) |
| #define LZX_BLOCKTYPE_ALIGNED (2) |
| #define LZX_BLOCKTYPE_UNCOMPRESSED (3) |
| #define LZX_PRETREE_NUM_ELEMENTS (20) |
| #define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */ |
| #define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */ |
| #define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */ |
| |
| /* LZX huffman defines: tweak tablebits as desired */ |
| #define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS) |
| #define LZX_PRETREE_TABLEBITS (6) |
| #define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8) |
| #define LZX_MAINTREE_TABLEBITS (12) |
| #define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1) |
| #define LZX_LENGTH_TABLEBITS (12) |
| #define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS) |
| #define LZX_ALIGNED_TABLEBITS (7) |
| |
| #define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */ |
| |
| #define LZX_DECLARE_TABLE(tbl) \ |
| UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\ |
| UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY] |
| |
| struct LZXstate |
| { |
| UBYTE *window; /* the actual decoding window */ |
| ULONG window_size; /* window size (32Kb through 2Mb) */ |
| ULONG actual_size; /* window size when it was first allocated */ |
| ULONG window_posn; /* current offset within the window */ |
| ULONG R0, R1, R2; /* for the LRU offset system */ |
| UWORD main_elements; /* number of main tree elements */ |
| int header_read; /* have we started decoding at all yet? */ |
| UWORD block_type; /* type of this block */ |
| ULONG block_length; /* uncompressed length of this block */ |
| ULONG block_remaining; /* uncompressed bytes still left to decode */ |
| ULONG frames_read; /* the number of CFDATA blocks processed */ |
| LONG intel_filesize; /* magic header value used for transform */ |
| LONG intel_curpos; /* current offset in transform space */ |
| int intel_started; /* have we seen any translatable data yet? */ |
| |
| LZX_DECLARE_TABLE(PRETREE); |
| LZX_DECLARE_TABLE(MAINTREE); |
| LZX_DECLARE_TABLE(LENGTH); |
| LZX_DECLARE_TABLE(ALIGNED); |
| }; |
| |
| /* LZX decruncher */ |
| |
| /* Microsoft's LZX document and their implementation of the |
| * com.ms.util.cab Java package do not concur. |
| * |
| * In the LZX document, there is a table showing the correlation between |
| * window size and the number of position slots. It states that the 1MB |
| * window = 40 slots and the 2MB window = 42 slots. In the implementation, |
| * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the |
| * first slot whose position base is equal to or more than the required |
| * window size'. This would explain why other tables in the document refer |
| * to 50 slots rather than 42. |
| * |
| * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode |
| * is not defined in the specification. |
| * |
| * The LZX document does not state the uncompressed block has an |
| * uncompressed length field. Where does this length field come from, so |
| * we can know how large the block is? The implementation has it as the 24 |
| * bits following after the 3 blocktype bits, before the alignment |
| * padding. |
| * |
| * The LZX document states that aligned offset blocks have their aligned |
| * offset huffman tree AFTER the main and length trees. The implementation |
| * suggests that the aligned offset tree is BEFORE the main and length |
| * trees. |
| * |
| * The LZX document decoding algorithm states that, in an aligned offset |
| * block, if an extra_bits value is 1, 2 or 3, then that number of bits |
| * should be read and the result added to the match offset. This is |
| * correct for 1 and 2, but not 3, where just a huffman symbol (using the |
| * aligned tree) should be read. |
| * |
| * Regarding the E8 preprocessing, the LZX document states 'No translation |
| * may be performed on the last 6 bytes of the input block'. This is |
| * correct. However, the pseudocode provided checks for the *E8 leader* |
| * up to the last 6 bytes. If the leader appears between -10 and -7 bytes |
| * from the end, this would cause the next four bytes to be modified, at |
| * least one of which would be in the last 6 bytes, which is not allowed |
| * according to the spec. |
| * |
| * The specification states that the huffman trees must always contain at |
| * least one element. However, many CAB files contain blocks where the |
| * length tree is completely empty (because there are no matches), and |
| * this is expected to succeed. |
| */ |
| |
| |
| /* LZX uses what it calls 'position slots' to represent match offsets. |
| * What this means is that a small 'position slot' number and a small |
| * offset from that slot are encoded instead of one large offset for |
| * every match. |
| * - position_base is an index to the position slot bases |
| * - extra_bits states how many bits of offset-from-base data is needed. |
| */ |
| static const UBYTE extra_bits[51] = { |
| 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
| 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, |
| 15, 15, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
| 17, 17, 17 |
| }; |
| |
| static const ULONG position_base[51] = { |
| 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, |
| 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, |
| 65536, 98304, 131072, 196608, 262144, 393216, 524288, 655360, 786432, 917504, 1048576, 1179648, 1310720, 1441792, 1572864, 1703936, |
| 1835008, 1966080, 2097152 |
| }; |
| |
| struct LZXstate *LZXinit(int window) |
| { |
| struct LZXstate *pState=NULL; |
| ULONG wndsize = 1 << window; |
| int i, posn_slots; |
| |
| /* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */ |
| /* if a previously allocated window is big enough, keep it */ |
| if (window < 15 || window > 21) return NULL; |
| |
| /* allocate state and associated window */ |
| pState = HeapAlloc(GetProcessHeap(), 0, sizeof(struct LZXstate)); |
| if (!(pState->window = HeapAlloc(GetProcessHeap(), 0, wndsize))) |
| { |
| HeapFree(GetProcessHeap(), 0, pState); |
| return NULL; |
| } |
| pState->actual_size = wndsize; |
| pState->window_size = wndsize; |
| |
| /* calculate required position slots */ |
| if (window == 20) posn_slots = 42; |
| else if (window == 21) posn_slots = 50; |
| else posn_slots = window << 1; |
| |
| /** alternatively **/ |
| /* posn_slots=i=0; while (i < wndsize) i += 1 << extra_bits[posn_slots++]; */ |
| |
| /* initialize other state */ |
| pState->R0 = pState->R1 = pState->R2 = 1; |
| pState->main_elements = LZX_NUM_CHARS + (posn_slots << 3); |
| pState->header_read = 0; |
| pState->frames_read = 0; |
| pState->block_remaining = 0; |
| pState->block_type = LZX_BLOCKTYPE_INVALID; |
| pState->intel_curpos = 0; |
| pState->intel_started = 0; |
| pState->window_posn = 0; |
| |
| /* initialise tables to 0 (because deltas will be applied to them) */ |
| for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) pState->MAINTREE_len[i] = 0; |
| for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) pState->LENGTH_len[i] = 0; |
| |
| return pState; |
| } |
| |
| void LZXteardown(struct LZXstate *pState) |
| { |
| if (pState) |
| { |
| HeapFree(GetProcessHeap(), 0, pState->window); |
| HeapFree(GetProcessHeap(), 0, pState); |
| } |
| } |
| |
| int LZXreset(struct LZXstate *pState) |
| { |
| int i; |
| |
| pState->R0 = pState->R1 = pState->R2 = 1; |
| pState->header_read = 0; |
| pState->frames_read = 0; |
| pState->block_remaining = 0; |
| pState->block_type = LZX_BLOCKTYPE_INVALID; |
| pState->intel_curpos = 0; |
| pState->intel_started = 0; |
| pState->window_posn = 0; |
| |
| for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS + LZX_LENTABLE_SAFETY; i++) pState->MAINTREE_len[i] = 0; |
| for (i = 0; i < LZX_LENGTH_MAXSYMBOLS + LZX_LENTABLE_SAFETY; i++) pState->LENGTH_len[i] = 0; |
| |
| return DECR_OK; |
| } |
| |
| |
| /* Bitstream reading macros: |
| * |
| * INIT_BITSTREAM should be used first to set up the system |
| * READ_BITS(var,n) takes N bits from the buffer and puts them in var |
| * |
| * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer |
| * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer |
| * REMOVE_BITS(n) removes N bits from the bit buffer |
| * |
| * These bit access routines work by using the area beyond the MSB and the |
| * LSB as a free source of zeroes. This avoids having to mask any bits. |
| * So we have to know the bit width of the bitbuffer variable. This is |
| * sizeof(ULONG) * 8, also defined as ULONG_BITS |
| */ |
| |
| /* number of bits in ULONG. Note: This must be at multiple of 16, and at |
| * least 32 for the bitbuffer code to work (ie, it must be able to ensure |
| * up to 17 bits - that's adding 16 bits when there's one bit left, or |
| * adding 32 bits when there are no bits left. The code should work fine |
| * for machines where ULONG >= 32 bits. |
| */ |
| #define ULONG_BITS (sizeof(ULONG)<<3) |
| |
| #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0) |
| |
| #define ENSURE_BITS(n) \ |
| while (bitsleft < (n)) { \ |
| bitbuf |= ((inpos[1]<<8)|inpos[0]) << (ULONG_BITS-16 - bitsleft); \ |
| bitsleft += 16; inpos+=2; \ |
| } |
| |
| #define PEEK_BITS(n) (bitbuf >> (ULONG_BITS - (n))) |
| #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n))) |
| |
| #define READ_BITS(v,n) do { \ |
| ENSURE_BITS(n); \ |
| (v) = PEEK_BITS(n); \ |
| REMOVE_BITS(n); \ |
| } while (0) |
| |
| |
| /* Huffman macros */ |
| |
| #define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS) |
| #define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS) |
| #define SYMTABLE(tbl) (pState->tbl##_table) |
| #define LENTABLE(tbl) (pState->tbl##_len) |
| |
| /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths. |
| * In reality, it just calls make_decode_table() with the appropriate |
| * values - they're all fixed by some #defines anyway, so there's no point |
| * writing each call out in full by hand. |
| */ |
| #define BUILD_TABLE(tbl) \ |
| if (make_decode_table( \ |
| MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \ |
| )) { return DECR_ILLEGALDATA; } |
| |
| |
| /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the |
| * bitstream using the stated table and puts it in var. |
| */ |
| #define READ_HUFFSYM(tbl,var) do { \ |
| ENSURE_BITS(16); \ |
| hufftbl = SYMTABLE(tbl); \ |
| if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \ |
| j = 1 << (ULONG_BITS - TABLEBITS(tbl)); \ |
| do { \ |
| j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \ |
| if (!j) { return DECR_ILLEGALDATA; } \ |
| } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \ |
| } \ |
| j = LENTABLE(tbl)[(var) = i]; \ |
| REMOVE_BITS(j); \ |
| } while (0) |
| |
| |
| /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols |
| * first to last in the given table. The code lengths are stored in their |
| * own special LZX way. |
| */ |
| #define READ_LENGTHS(tbl,first,last) do { \ |
| lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \ |
| if (lzx_read_lens(pState, LENTABLE(tbl),(first),(last),&lb)) { \ |
| return DECR_ILLEGALDATA; \ |
| } \ |
| bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \ |
| } while (0) |
| |
| |
| /* make_decode_table(nsyms, nbits, length[], table[]) |
| * |
| * This function was coded by David Tritscher. It builds a fast huffman |
| * decoding table out of just a canonical huffman code lengths table. |
| * |
| * nsyms = total number of symbols in this huffman tree. |
| * nbits = any symbols with a code length of nbits or less can be decoded |
| * in one lookup of the table. |
| * length = A table to get code lengths from [0 to syms-1] |
| * table = The table to fill up with decoded symbols and pointers. |
| * |
| * Returns 0 for OK or 1 for error |
| */ |
| |
| static int make_decode_table(ULONG nsyms, ULONG nbits, UBYTE *length, UWORD *table) { |
| register UWORD sym; |
| register ULONG leaf; |
| register UBYTE bit_num = 1; |
| ULONG fill; |
| ULONG pos = 0; /* the current position in the decode table */ |
| ULONG table_mask = 1 << nbits; |
| ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */ |
| ULONG next_symbol = bit_mask; /* base of allocation for long codes */ |
| |
| /* fill entries for codes short enough for a direct mapping */ |
| while (bit_num <= nbits) { |
| for (sym = 0; sym < nsyms; sym++) { |
| if (length[sym] == bit_num) { |
| leaf = pos; |
| |
| if((pos += bit_mask) > table_mask) return 1; /* table overrun */ |
| |
| /* fill all possible lookups of this symbol with the symbol itself */ |
| fill = bit_mask; |
| while (fill-- > 0) table[leaf++] = sym; |
| } |
| } |
| bit_mask >>= 1; |
| bit_num++; |
| } |
| |
| /* if there are any codes longer than nbits */ |
| if (pos != table_mask) { |
| /* clear the remainder of the table */ |
| for (sym = pos; sym < table_mask; sym++) table[sym] = 0; |
| |
| /* give ourselves room for codes to grow by up to 16 more bits */ |
| pos <<= 16; |
| table_mask <<= 16; |
| bit_mask = 1 << 15; |
| |
| while (bit_num <= 16) { |
| for (sym = 0; sym < nsyms; sym++) { |
| if (length[sym] == bit_num) { |
| leaf = pos >> 16; |
| for (fill = 0; fill < bit_num - nbits; fill++) { |
| /* if this path hasn't been taken yet, 'allocate' two entries */ |
| if (table[leaf] == 0) { |
| table[(next_symbol << 1)] = 0; |
| table[(next_symbol << 1) + 1] = 0; |
| table[leaf] = next_symbol++; |
| } |
| /* follow the path and select either left or right for next bit */ |
| leaf = table[leaf] << 1; |
| if ((pos >> (15-fill)) & 1) leaf++; |
| } |
| table[leaf] = sym; |
| |
| if ((pos += bit_mask) > table_mask) return 1; /* table overflow */ |
| } |
| } |
| bit_mask >>= 1; |
| bit_num++; |
| } |
| } |
| |
| /* full table? */ |
| if (pos == table_mask) return 0; |
| |
| /* either erroneous table, or all elements are 0 - let's find out. */ |
| for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1; |
| return 0; |
| } |
| |
| struct lzx_bits { |
| ULONG bb; |
| int bl; |
| UBYTE *ip; |
| }; |
| |
| static int lzx_read_lens(struct LZXstate *pState, UBYTE *lens, ULONG first, ULONG last, struct lzx_bits *lb) { |
| ULONG i,j, x,y; |
| int z; |
| |
| register ULONG bitbuf = lb->bb; |
| register int bitsleft = lb->bl; |
| UBYTE *inpos = lb->ip; |
| UWORD *hufftbl; |
| |
| for (x = 0; x < 20; x++) { |
| READ_BITS(y, 4); |
| LENTABLE(PRETREE)[x] = y; |
| } |
| BUILD_TABLE(PRETREE); |
| |
| for (x = first; x < last; ) { |
| READ_HUFFSYM(PRETREE, z); |
| if (z == 17) { |
| READ_BITS(y, 4); y += 4; |
| while (y--) lens[x++] = 0; |
| } |
| else if (z == 18) { |
| READ_BITS(y, 5); y += 20; |
| while (y--) lens[x++] = 0; |
| } |
| else if (z == 19) { |
| READ_BITS(y, 1); y += 4; |
| READ_HUFFSYM(PRETREE, z); |
| z = lens[x] - z; if (z < 0) z += 17; |
| while (y--) lens[x++] = z; |
| } |
| else { |
| z = lens[x] - z; if (z < 0) z += 17; |
| lens[x++] = z; |
| } |
| } |
| |
| lb->bb = bitbuf; |
| lb->bl = bitsleft; |
| lb->ip = inpos; |
| return 0; |
| } |
| |
| int LZXdecompress(struct LZXstate *pState, unsigned char *inpos, unsigned char *outpos, int inlen, int outlen) { |
| UBYTE *endinp = inpos + inlen; |
| UBYTE *window = pState->window; |
| UBYTE *runsrc, *rundest; |
| UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */ |
| |
| ULONG window_posn = pState->window_posn; |
| ULONG window_size = pState->window_size; |
| ULONG R0 = pState->R0; |
| ULONG R1 = pState->R1; |
| ULONG R2 = pState->R2; |
| |
| register ULONG bitbuf; |
| register int bitsleft; |
| ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */ |
| struct lzx_bits lb; /* used in READ_LENGTHS macro */ |
| |
| int togo = outlen, this_run, main_element, aligned_bits; |
| int match_length, length_footer, extra, verbatim_bits; |
| int copy_length; |
| |
| INIT_BITSTREAM; |
| |
| /* read header if necessary */ |
| if (!pState->header_read) { |
| i = j = 0; |
| READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); } |
| pState->intel_filesize = (i << 16) | j; /* or 0 if not encoded */ |
| pState->header_read = 1; |
| } |
| |
| /* main decoding loop */ |
| while (togo > 0) { |
| /* last block finished, new block expected */ |
| if (pState->block_remaining == 0) { |
| if (pState->block_type == LZX_BLOCKTYPE_UNCOMPRESSED) { |
| if (pState->block_length & 1) inpos++; /* realign bitstream to word */ |
| INIT_BITSTREAM; |
| } |
| |
| READ_BITS(pState->block_type, 3); |
| READ_BITS(i, 16); |
| READ_BITS(j, 8); |
| pState->block_remaining = pState->block_length = (i << 8) | j; |
| |
| switch (pState->block_type) { |
| case LZX_BLOCKTYPE_ALIGNED: |
| for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; } |
| BUILD_TABLE(ALIGNED); |
| /* rest of aligned header is same as verbatim */ |
| |
| case LZX_BLOCKTYPE_VERBATIM: |
| READ_LENGTHS(MAINTREE, 0, 256); |
| READ_LENGTHS(MAINTREE, 256, pState->main_elements); |
| BUILD_TABLE(MAINTREE); |
| if (LENTABLE(MAINTREE)[0xE8] != 0) pState->intel_started = 1; |
| |
| READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS); |
| BUILD_TABLE(LENGTH); |
| break; |
| |
| case LZX_BLOCKTYPE_UNCOMPRESSED: |
| pState->intel_started = 1; /* because we can't assume otherwise */ |
| ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */ |
| if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */ |
| R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; |
| R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; |
| R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; |
| break; |
| |
| default: |
| return DECR_ILLEGALDATA; |
| } |
| } |
| |
| /* buffer exhaustion check */ |
| if (inpos > endinp) { |
| /* it's possible to have a file where the next run is less than |
| * 16 bits in size. In this case, the READ_HUFFSYM() macro used |
| * in building the tables will exhaust the buffer, so we should |
| * allow for this, but not allow those accidentally read bits to |
| * be used (so we check that there are at least 16 bits |
| * remaining - in this boundary case they aren't really part of |
| * the compressed data) |
| */ |
| if (inpos > (endinp+2) || bitsleft < 16) return DECR_ILLEGALDATA; |
| } |
| |
| while ((this_run = pState->block_remaining) > 0 && togo > 0) { |
| if (this_run > togo) this_run = togo; |
| togo -= this_run; |
| pState->block_remaining -= this_run; |
| |
| /* apply 2^x-1 mask */ |
| window_posn &= window_size - 1; |
| /* runs can't straddle the window wraparound */ |
| if ((window_posn + this_run) > window_size) |
| return DECR_DATAFORMAT; |
| |
| switch (pState->block_type) { |
| |
| case LZX_BLOCKTYPE_VERBATIM: |
| while (this_run > 0) { |
| READ_HUFFSYM(MAINTREE, main_element); |
| |
| if (main_element < LZX_NUM_CHARS) { |
| /* literal: 0 to LZX_NUM_CHARS-1 */ |
| window[window_posn++] = main_element; |
| this_run--; |
| } |
| else { |
| /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ |
| main_element -= LZX_NUM_CHARS; |
| |
| match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; |
| if (match_length == LZX_NUM_PRIMARY_LENGTHS) { |
| READ_HUFFSYM(LENGTH, length_footer); |
| match_length += length_footer; |
| } |
| match_length += LZX_MIN_MATCH; |
| |
| match_offset = main_element >> 3; |
| |
| if (match_offset > 2) { |
| /* not repeated offset */ |
| if (match_offset != 3) { |
| extra = extra_bits[match_offset]; |
| READ_BITS(verbatim_bits, extra); |
| match_offset = position_base[match_offset] - 2 + verbatim_bits; |
| } |
| else { |
| match_offset = 1; |
| } |
| |
| /* update repeated offset LRU queue */ |
| R2 = R1; R1 = R0; R0 = match_offset; |
| } |
| else if (match_offset == 0) { |
| match_offset = R0; |
| } |
| else if (match_offset == 1) { |
| match_offset = R1; |
| R1 = R0; R0 = match_offset; |
| } |
| else /* match_offset == 2 */ { |
| match_offset = R2; |
| R2 = R0; R0 = match_offset; |
| } |
| |
| rundest = window + window_posn; |
| this_run -= match_length; |
| |
| /* copy any wrapped around source data */ |
| if (window_posn >= match_offset) { |
| /* no wrap */ |
| runsrc = rundest - match_offset; |
| } else { |
| runsrc = rundest + (window_size - match_offset); |
| copy_length = match_offset - window_posn; |
| if (copy_length < match_length) { |
| match_length -= copy_length; |
| window_posn += copy_length; |
| while (copy_length-- > 0) *rundest++ = *runsrc++; |
| runsrc = window; |
| } |
| } |
| window_posn += match_length; |
| |
| /* copy match data - no worries about destination wraps */ |
| while (match_length-- > 0) *rundest++ = *runsrc++; |
| |
| } |
| } |
| break; |
| |
| case LZX_BLOCKTYPE_ALIGNED: |
| while (this_run > 0) { |
| READ_HUFFSYM(MAINTREE, main_element); |
| |
| if (main_element < LZX_NUM_CHARS) { |
| /* literal: 0 to LZX_NUM_CHARS-1 */ |
| window[window_posn++] = main_element; |
| this_run--; |
| } |
| else { |
| /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ |
| main_element -= LZX_NUM_CHARS; |
| |
| match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; |
| if (match_length == LZX_NUM_PRIMARY_LENGTHS) { |
| READ_HUFFSYM(LENGTH, length_footer); |
| match_length += length_footer; |
| } |
| match_length += LZX_MIN_MATCH; |
| |
| match_offset = main_element >> 3; |
| |
| if (match_offset > 2) { |
| /* not repeated offset */ |
| extra = extra_bits[match_offset]; |
| match_offset = position_base[match_offset] - 2; |
| if (extra > 3) { |
| /* verbatim and aligned bits */ |
| extra -= 3; |
| READ_BITS(verbatim_bits, extra); |
| match_offset += (verbatim_bits << 3); |
| READ_HUFFSYM(ALIGNED, aligned_bits); |
| match_offset += aligned_bits; |
| } |
| else if (extra == 3) { |
| /* aligned bits only */ |
| READ_HUFFSYM(ALIGNED, aligned_bits); |
| match_offset += aligned_bits; |
| } |
| else if (extra > 0) { /* extra==1, extra==2 */ |
| /* verbatim bits only */ |
| READ_BITS(verbatim_bits, extra); |
| match_offset += verbatim_bits; |
| } |
| else /* extra == 0 */ { |
| /* ??? */ |
| match_offset = 1; |
| } |
| |
| /* update repeated offset LRU queue */ |
| R2 = R1; R1 = R0; R0 = match_offset; |
| } |
| else if (match_offset == 0) { |
| match_offset = R0; |
| } |
| else if (match_offset == 1) { |
| match_offset = R1; |
| R1 = R0; R0 = match_offset; |
| } |
| else /* match_offset == 2 */ { |
| match_offset = R2; |
| R2 = R0; R0 = match_offset; |
| } |
| |
| rundest = window + window_posn; |
| this_run -= match_length; |
| |
| /* copy any wrapped around source data */ |
| if (window_posn >= match_offset) { |
| /* no wrap */ |
| runsrc = rundest - match_offset; |
| } else { |
| runsrc = rundest + (window_size - match_offset); |
| copy_length = match_offset - window_posn; |
| if (copy_length < match_length) { |
| match_length -= copy_length; |
| window_posn += copy_length; |
| while (copy_length-- > 0) *rundest++ = *runsrc++; |
| runsrc = window; |
| } |
| } |
| window_posn += match_length; |
| |
| /* copy match data - no worries about destination wraps */ |
| while (match_length-- > 0) *rundest++ = *runsrc++; |
| |
| } |
| } |
| break; |
| |
| case LZX_BLOCKTYPE_UNCOMPRESSED: |
| if ((inpos + this_run) > endinp) return DECR_ILLEGALDATA; |
| memcpy(window + window_posn, inpos, (size_t) this_run); |
| inpos += this_run; window_posn += this_run; |
| break; |
| |
| default: |
| return DECR_ILLEGALDATA; /* might as well */ |
| } |
| |
| } |
| } |
| |
| if (togo != 0) return DECR_ILLEGALDATA; |
| memcpy(outpos, window + ((!window_posn) ? window_size : window_posn) - outlen, (size_t) outlen); |
| |
| pState->window_posn = window_posn; |
| pState->R0 = R0; |
| pState->R1 = R1; |
| pState->R2 = R2; |
| |
| /* intel E8 decoding */ |
| if ((pState->frames_read++ < 32768) && pState->intel_filesize != 0) { |
| if (outlen <= 6 || !pState->intel_started) { |
| pState->intel_curpos += outlen; |
| } |
| else { |
| UBYTE *data = outpos; |
| UBYTE *dataend = data + outlen - 10; |
| LONG curpos = pState->intel_curpos; |
| LONG filesize = pState->intel_filesize; |
| LONG abs_off, rel_off; |
| |
| pState->intel_curpos = curpos + outlen; |
| |
| while (data < dataend) { |
| if (*data++ != 0xE8) { curpos++; continue; } |
| abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24); |
| if ((abs_off >= -curpos) && (abs_off < filesize)) { |
| rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize; |
| data[0] = (UBYTE) rel_off; |
| data[1] = (UBYTE) (rel_off >> 8); |
| data[2] = (UBYTE) (rel_off >> 16); |
| data[3] = (UBYTE) (rel_off >> 24); |
| } |
| data += 4; |
| curpos += 5; |
| } |
| } |
| } |
| return DECR_OK; |
| } |
| |
| #ifdef LZX_CHM_TESTDRIVER |
| int main(int c, char **v) |
| { |
| FILE *fin, *fout; |
| struct LZXstate state; |
| UBYTE ibuf[16384]; |
| UBYTE obuf[32768]; |
| int ilen, olen; |
| int status; |
| int i; |
| int count=0; |
| int w = atoi(v[1]); |
| LZXinit(&state, w); |
| fout = fopen(v[2], "wb"); |
| for (i=3; i<c; i++) |
| { |
| fin = fopen(v[i], "rb"); |
| ilen = fread(ibuf, 1, 16384, fin); |
| status = LZXdecompress(&state, ibuf, obuf, ilen, 32768); |
| switch (status) |
| { |
| case DECR_OK: |
| printf("ok\n"); |
| fwrite(obuf, 1, 32768, fout); |
| break; |
| case DECR_DATAFORMAT: |
| printf("bad format\n"); |
| break; |
| case DECR_ILLEGALDATA: |
| printf("illegal data\n"); |
| break; |
| case DECR_NOMEMORY: |
| printf("no memory\n"); |
| break; |
| default: |
| break; |
| } |
| fclose(fin); |
| if (++count == 2) |
| { |
| count = 0; |
| LZXreset(&state); |
| } |
| } |
| fclose(fout); |
| } |
| #endif |