|  | /* | 
|  | * dlls/rsaenh/tomcrypt.h | 
|  | * Function prototypes, type definitions and constant definitions | 
|  | * for LibTomCrypt code. | 
|  | * | 
|  | * Copyright 2004 Michael Jung | 
|  | * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca) | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file contains code from the LibTomCrypt cryptographic | 
|  | * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt | 
|  | * is in the public domain. The code in this file is tailored to | 
|  | * special requirements. Take a look at http://libtomcrypt.org for the | 
|  | * original version. | 
|  | */ | 
|  |  | 
|  | #ifndef __WINE_TOMCRYPT_H_ | 
|  | #define __WINE_TOMCRYPT_H_ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include <stdlib.h> | 
|  | #include <limits.h> | 
|  | #include "basetsd.h" | 
|  |  | 
|  | /* error codes [will be expanded in future releases] */ | 
|  | enum { | 
|  | CRYPT_OK=0,             /* Result OK */ | 
|  | CRYPT_ERROR,            /* Generic Error */ | 
|  | CRYPT_NOP,              /* Not a failure but no operation was performed */ | 
|  |  | 
|  | CRYPT_INVALID_KEYSIZE,  /* Invalid key size given */ | 
|  | CRYPT_INVALID_ROUNDS,   /* Invalid number of rounds */ | 
|  | CRYPT_FAIL_TESTVECTOR,  /* Algorithm failed test vectors */ | 
|  |  | 
|  | CRYPT_BUFFER_OVERFLOW,  /* Not enough space for output */ | 
|  | CRYPT_INVALID_PACKET,   /* Invalid input packet given */ | 
|  |  | 
|  | CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */ | 
|  | CRYPT_ERROR_READPRNG,   /* Could not read enough from PRNG */ | 
|  |  | 
|  | CRYPT_INVALID_CIPHER,   /* Invalid cipher specified */ | 
|  | CRYPT_INVALID_HASH,     /* Invalid hash specified */ | 
|  | CRYPT_INVALID_PRNG,     /* Invalid PRNG specified */ | 
|  |  | 
|  | CRYPT_MEM,              /* Out of memory */ | 
|  |  | 
|  | CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */ | 
|  | CRYPT_PK_NOT_PRIVATE,   /* Requires a private PK key */ | 
|  |  | 
|  | CRYPT_INVALID_ARG,      /* Generic invalid argument */ | 
|  | CRYPT_FILE_NOTFOUND,    /* File Not Found */ | 
|  |  | 
|  | CRYPT_PK_INVALID_TYPE,  /* Invalid type of PK key */ | 
|  | CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */ | 
|  | CRYPT_PK_DUP,           /* Duplicate key already in key ring */ | 
|  | CRYPT_PK_NOT_FOUND,     /* Key not found in keyring */ | 
|  | CRYPT_PK_INVALID_SIZE,  /* Invalid size input for PK parameters */ | 
|  |  | 
|  | CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */ | 
|  | }; | 
|  |  | 
|  | #define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b)) | 
|  | typedef ULONG64 ulong64; | 
|  |  | 
|  | /* this is the "32-bit at least" data type | 
|  | * Re-define it to suit your platform but it must be at least 32-bits | 
|  | */ | 
|  | typedef ULONG32 ulong32; | 
|  |  | 
|  | /* ---- HELPER MACROS ---- */ | 
|  | #define STORE32H(x, y)                                                                     \ | 
|  | { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255);   \ | 
|  | (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } | 
|  |  | 
|  | #define LOAD32H(x, y)                            \ | 
|  | { x = ((unsigned long)((y)[0] & 255)<<24) | \ | 
|  | ((unsigned long)((y)[1] & 255)<<16) | \ | 
|  | ((unsigned long)((y)[2] & 255)<<8)  | \ | 
|  | ((unsigned long)((y)[3] & 255)); } | 
|  |  | 
|  | #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC) | 
|  |  | 
|  | static inline unsigned ROR(unsigned word, int i) | 
|  | { | 
|  | __asm__("rorl %%cl,%0" | 
|  | :"=r" (word) | 
|  | :"0" (word),"c" (i)); | 
|  | return word; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* rotates the hard way */ | 
|  | #define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \ | 
|  | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #undef MIN | 
|  | #define MIN(x, y) ( ((x)<(y))?(x):(y) ) | 
|  |  | 
|  | #define byte(x, n) (((x) >> (8 * (n))) & 255) | 
|  |  | 
|  | typedef struct tag_rc2_key { | 
|  | unsigned xkey[64]; | 
|  | } rc2_key; | 
|  |  | 
|  | typedef struct tag_des_key { | 
|  | ulong32 ek[32], dk[32]; | 
|  | } des_key; | 
|  |  | 
|  | typedef struct tag_des3_key { | 
|  | ulong32 ek[3][32], dk[3][32]; | 
|  | } des3_key; | 
|  |  | 
|  | int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey); | 
|  | void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key); | 
|  | void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key); | 
|  |  | 
|  | int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey); | 
|  | void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, des_key *key); | 
|  | void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, des_key *key); | 
|  |  | 
|  | int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey); | 
|  | void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, des3_key *key); | 
|  | void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, des3_key *key); | 
|  |  | 
|  | typedef struct tag_md2_state { | 
|  | unsigned char chksum[16], X[48], buf[16]; | 
|  | unsigned long curlen; | 
|  | } md2_state; | 
|  |  | 
|  | int md2_init(md2_state * md); | 
|  | int md2_process(md2_state * md, const unsigned char *buf, unsigned long len); | 
|  | int md2_done(md2_state * md, unsigned char *hash); | 
|  |  | 
|  | struct rc4_prng { | 
|  | int x, y; | 
|  | unsigned char buf[256]; | 
|  | }; | 
|  |  | 
|  | typedef union Prng_state { | 
|  | struct rc4_prng       rc4; | 
|  | } prng_state; | 
|  |  | 
|  | int rc4_start(prng_state *prng); | 
|  | int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng); | 
|  | int rc4_ready(prng_state *prng); | 
|  | unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng); | 
|  |  | 
|  | /* some default configurations. | 
|  | * | 
|  | * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits | 
|  | * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits | 
|  | * | 
|  | * At the very least a mp_digit must be able to hold 7 bits | 
|  | * [any size beyond that is ok provided it doesn't overflow the data type] | 
|  | */ | 
|  | typedef unsigned long      mp_digit; | 
|  | typedef ulong64            mp_word; | 
|  | #define DIGIT_BIT 28 | 
|  |  | 
|  | #define MP_DIGIT_BIT     DIGIT_BIT | 
|  | #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) | 
|  | #define MP_DIGIT_MAX     MP_MASK | 
|  |  | 
|  | /* equalities */ | 
|  | #define MP_LT        -1   /* less than */ | 
|  | #define MP_EQ         0   /* equal to */ | 
|  | #define MP_GT         1   /* greater than */ | 
|  |  | 
|  | #define MP_ZPOS       0   /* positive integer */ | 
|  | #define MP_NEG        1   /* negative */ | 
|  |  | 
|  | #define MP_OKAY       0   /* ok result */ | 
|  | #define MP_MEM        -2  /* out of mem */ | 
|  | #define MP_VAL        -3  /* invalid input */ | 
|  | #define MP_RANGE      MP_VAL | 
|  |  | 
|  | #define MP_YES        1   /* yes response */ | 
|  | #define MP_NO         0   /* no response */ | 
|  |  | 
|  | /* Primality generation flags */ | 
|  | #define LTM_PRIME_BBS      0x0001 /* BBS style prime */ | 
|  | #define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */ | 
|  | #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */ | 
|  | #define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */ | 
|  |  | 
|  | typedef int           mp_err; | 
|  |  | 
|  | /* you'll have to tune these... */ | 
|  | extern int KARATSUBA_MUL_CUTOFF, | 
|  | KARATSUBA_SQR_CUTOFF; | 
|  |  | 
|  | /* define this to use lower memory usage routines (exptmods mostly) */ | 
|  | /* #define MP_LOW_MEM */ | 
|  |  | 
|  | #define MP_PREC                 64     /* default digits of precision */ | 
|  |  | 
|  | /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ | 
|  | #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) | 
|  |  | 
|  | /* the infamous mp_int structure */ | 
|  | typedef struct  { | 
|  | int used, alloc, sign; | 
|  | mp_digit *dp; | 
|  | } mp_int; | 
|  |  | 
|  | /* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */ | 
|  | typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); | 
|  |  | 
|  | #define DIGIT(m,k) ((m)->dp[(k)]) | 
|  |  | 
|  | /* error code to char* string */ | 
|  | char *mp_error_to_string(int code); | 
|  |  | 
|  | /* ---> init and deinit bignum functions <--- */ | 
|  | /* init a bignum */ | 
|  | int mp_init(mp_int *a); | 
|  |  | 
|  | /* free a bignum */ | 
|  | void mp_clear(mp_int *a); | 
|  |  | 
|  | /* init a null terminated series of arguments */ | 
|  | int mp_init_multi(mp_int *mp, ...); | 
|  |  | 
|  | /* clear a null terminated series of arguments */ | 
|  | void mp_clear_multi(mp_int *mp, ...); | 
|  |  | 
|  | /* exchange two ints */ | 
|  | void mp_exch(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* shrink ram required for a bignum */ | 
|  | int mp_shrink(mp_int *a); | 
|  |  | 
|  | /* grow an int to a given size */ | 
|  | int mp_grow(mp_int *a, int size); | 
|  |  | 
|  | /* init to a given number of digits */ | 
|  | int mp_init_size(mp_int *a, int size); | 
|  |  | 
|  | /* ---> Basic Manipulations <--- */ | 
|  | #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) | 
|  | #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) | 
|  | #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) | 
|  |  | 
|  | /* set to zero */ | 
|  | void mp_zero(mp_int *a); | 
|  |  | 
|  | /* set to a digit */ | 
|  | void mp_set(mp_int *a, mp_digit b); | 
|  |  | 
|  | /* set a 32-bit const */ | 
|  | int mp_set_int(mp_int *a, unsigned long b); | 
|  |  | 
|  | /* get a 32-bit value */ | 
|  | unsigned long mp_get_int(mp_int * a); | 
|  |  | 
|  | /* initialize and set a digit */ | 
|  | int mp_init_set (mp_int * a, mp_digit b); | 
|  |  | 
|  | /* initialize and set 32-bit value */ | 
|  | int mp_init_set_int (mp_int * a, unsigned long b); | 
|  |  | 
|  | /* copy, b = a */ | 
|  | int mp_copy(const mp_int *a, mp_int *b); | 
|  |  | 
|  | /* inits and copies, a = b */ | 
|  | int mp_init_copy(mp_int *a, const mp_int *b); | 
|  |  | 
|  | /* trim unused digits */ | 
|  | void mp_clamp(mp_int *a); | 
|  |  | 
|  | /* ---> digit manipulation <--- */ | 
|  |  | 
|  | /* right shift by "b" digits */ | 
|  | void mp_rshd(mp_int *a, int b); | 
|  |  | 
|  | /* left shift by "b" digits */ | 
|  | int mp_lshd(mp_int *a, int b); | 
|  |  | 
|  | /* c = a / 2**b */ | 
|  | int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); | 
|  |  | 
|  | /* b = a/2 */ | 
|  | int mp_div_2(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* c = a * 2**b */ | 
|  | int mp_mul_2d(mp_int *a, int b, mp_int *c); | 
|  |  | 
|  | /* b = a*2 */ | 
|  | int mp_mul_2(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* c = a mod 2**d */ | 
|  | int mp_mod_2d(mp_int *a, int b, mp_int *c); | 
|  |  | 
|  | /* computes a = 2**b */ | 
|  | int mp_2expt(mp_int *a, int b); | 
|  |  | 
|  | /* Counts the number of lsbs which are zero before the first zero bit */ | 
|  | int mp_cnt_lsb(mp_int *a); | 
|  |  | 
|  | /* I Love Earth! */ | 
|  |  | 
|  | /* makes a pseudo-random int of a given size */ | 
|  | int mp_rand(mp_int *a, int digits); | 
|  |  | 
|  | /* ---> binary operations <--- */ | 
|  | /* c = a XOR b  */ | 
|  | int mp_xor(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* c = a OR b */ | 
|  | int mp_or(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* c = a AND b */ | 
|  | int mp_and(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* ---> Basic arithmetic <--- */ | 
|  |  | 
|  | /* b = -a */ | 
|  | int mp_neg(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* b = |a| */ | 
|  | int mp_abs(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* compare a to b */ | 
|  | int mp_cmp(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* compare |a| to |b| */ | 
|  | int mp_cmp_mag(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* c = a + b */ | 
|  | int mp_add(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* c = a - b */ | 
|  | int mp_sub(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* c = a * b */ | 
|  | int mp_mul(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* b = a*a  */ | 
|  | int mp_sqr(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* a/b => cb + d == a */ | 
|  | int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | 
|  |  | 
|  | /* c = a mod b, 0 <= c < b  */ | 
|  | int mp_mod(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* ---> single digit functions <--- */ | 
|  |  | 
|  | /* compare against a single digit */ | 
|  | int mp_cmp_d(mp_int *a, mp_digit b); | 
|  |  | 
|  | /* c = a + b */ | 
|  | int mp_add_d(mp_int *a, mp_digit b, mp_int *c); | 
|  |  | 
|  | /* c = a - b */ | 
|  | int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); | 
|  |  | 
|  | /* c = a * b */ | 
|  | int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); | 
|  |  | 
|  | /* a/b => cb + d == a */ | 
|  | int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); | 
|  |  | 
|  | /* a/3 => 3c + d == a */ | 
|  | int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); | 
|  |  | 
|  | /* c = a**b */ | 
|  | int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); | 
|  |  | 
|  | /* c = a mod b, 0 <= c < b  */ | 
|  | int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); | 
|  |  | 
|  | /* ---> number theory <--- */ | 
|  |  | 
|  | /* d = a + b (mod c) */ | 
|  | int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | 
|  |  | 
|  | /* d = a - b (mod c) */ | 
|  | int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | 
|  |  | 
|  | /* d = a * b (mod c) */ | 
|  | int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | 
|  |  | 
|  | /* c = a * a (mod b) */ | 
|  | int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* c = 1/a (mod b) */ | 
|  | int mp_invmod(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* c = (a, b) */ | 
|  | int mp_gcd(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* produces value such that U1*a + U2*b = U3 */ | 
|  | int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); | 
|  |  | 
|  | /* c = [a, b] or (a*b)/(a, b) */ | 
|  | int mp_lcm(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* finds one of the b'th root of a, such that |c|**b <= |a| | 
|  | * | 
|  | * returns error if a < 0 and b is even | 
|  | */ | 
|  | int mp_n_root(mp_int *a, mp_digit b, mp_int *c); | 
|  |  | 
|  | /* special sqrt algo */ | 
|  | int mp_sqrt(mp_int *arg, mp_int *ret); | 
|  |  | 
|  | /* is number a square? */ | 
|  | int mp_is_square(mp_int *arg, int *ret); | 
|  |  | 
|  | /* computes the jacobi c = (a | n) (or Legendre if b is prime)  */ | 
|  | int mp_jacobi(mp_int *a, mp_int *n, int *c); | 
|  |  | 
|  | /* used to setup the Barrett reduction for a given modulus b */ | 
|  | int mp_reduce_setup(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* Barrett Reduction, computes a (mod b) with a precomputed value c | 
|  | * | 
|  | * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely | 
|  | * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. | 
|  | */ | 
|  | int mp_reduce(mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  | /* setups the montgomery reduction */ | 
|  | int mp_montgomery_setup(mp_int *a, mp_digit *mp); | 
|  |  | 
|  | /* computes a = B**n mod b without division or multiplication useful for | 
|  | * normalizing numbers in a Montgomery system. | 
|  | */ | 
|  | int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); | 
|  |  | 
|  | /* computes x/R == x (mod N) via Montgomery Reduction */ | 
|  | int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); | 
|  |  | 
|  | /* returns 1 if a is a valid DR modulus */ | 
|  | int mp_dr_is_modulus(mp_int *a); | 
|  |  | 
|  | /* sets the value of "d" required for mp_dr_reduce */ | 
|  | void mp_dr_setup(mp_int *a, mp_digit *d); | 
|  |  | 
|  | /* reduces a modulo b using the Diminished Radix method */ | 
|  | int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); | 
|  |  | 
|  | /* returns true if a can be reduced with mp_reduce_2k */ | 
|  | int mp_reduce_is_2k(mp_int *a); | 
|  |  | 
|  | /* determines k value for 2k reduction */ | 
|  | int mp_reduce_2k_setup(mp_int *a, mp_digit *d); | 
|  |  | 
|  | /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | 
|  | int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); | 
|  |  | 
|  | /* d = a**b (mod c) */ | 
|  | int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | 
|  |  | 
|  | /* ---> Primes <--- */ | 
|  |  | 
|  | /* number of primes */ | 
|  | #define PRIME_SIZE      256 | 
|  |  | 
|  | /* table of first PRIME_SIZE primes */ | 
|  | extern const mp_digit __prime_tab[]; | 
|  |  | 
|  | /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ | 
|  | int mp_prime_is_divisible(mp_int *a, int *result); | 
|  |  | 
|  | /* performs one Fermat test of "a" using base "b". | 
|  | * Sets result to 0 if composite or 1 if probable prime | 
|  | */ | 
|  | int mp_prime_fermat(mp_int *a, mp_int *b, int *result); | 
|  |  | 
|  | /* performs one Miller-Rabin test of "a" using base "b". | 
|  | * Sets result to 0 if composite or 1 if probable prime | 
|  | */ | 
|  | int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); | 
|  |  | 
|  | /* This gives [for a given bit size] the number of trials required | 
|  | * such that Miller-Rabin gives a prob of failure lower than 2^-96 | 
|  | */ | 
|  | int mp_prime_rabin_miller_trials(int size); | 
|  |  | 
|  | /* performs t rounds of Miller-Rabin on "a" using the first | 
|  | * t prime bases.  Also performs an initial sieve of trial | 
|  | * division.  Determines if "a" is prime with probability | 
|  | * of error no more than (1/4)**t. | 
|  | * | 
|  | * Sets result to 1 if probably prime, 0 otherwise | 
|  | */ | 
|  | int mp_prime_is_prime(mp_int *a, int t, int *result); | 
|  |  | 
|  | /* finds the next prime after the number "a" using "t" trials | 
|  | * of Miller-Rabin. | 
|  | * | 
|  | * bbs_style = 1 means the prime must be congruent to 3 mod 4 | 
|  | */ | 
|  | int mp_prime_next_prime(mp_int *a, int t, int bbs_style); | 
|  |  | 
|  | /* makes a truly random prime of a given size (bytes), | 
|  | * call with bbs = 1 if you want it to be congruent to 3 mod 4 | 
|  | * | 
|  | * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can | 
|  | * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself | 
|  | * so it can be NULL | 
|  | * | 
|  | * The prime generated will be larger than 2^(8*size). | 
|  | */ | 
|  | #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) | 
|  |  | 
|  | /* makes a truly random prime of a given size (bits), | 
|  | * | 
|  | * Flags are as follows: | 
|  | * | 
|  | *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4 | 
|  | *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) | 
|  | *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero | 
|  | *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one | 
|  | * | 
|  | * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can | 
|  | * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself | 
|  | * so it can be NULL | 
|  | * | 
|  | */ | 
|  | int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); | 
|  |  | 
|  | /* ---> radix conversion <--- */ | 
|  | int mp_count_bits(mp_int *a); | 
|  |  | 
|  | int mp_unsigned_bin_size(mp_int *a); | 
|  | int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c); | 
|  | int mp_to_unsigned_bin(mp_int *a, unsigned char *b); | 
|  |  | 
|  | int mp_signed_bin_size(mp_int *a); | 
|  | int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); | 
|  | int mp_to_signed_bin(mp_int *a, unsigned char *b); | 
|  |  | 
|  | int mp_read_radix(mp_int *a, char *str, int radix); | 
|  | int mp_toradix(mp_int *a, char *str, int radix); | 
|  | int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); | 
|  | int mp_radix_size(mp_int *a, int radix, int *size); | 
|  |  | 
|  | int mp_fread(mp_int *a, int radix, FILE *stream); | 
|  | int mp_fwrite(mp_int *a, int radix, FILE *stream); | 
|  |  | 
|  | #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) | 
|  | #define mp_raw_size(mp)           mp_signed_bin_size(mp) | 
|  | #define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str)) | 
|  | #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) | 
|  | #define mp_mag_size(mp)           mp_unsigned_bin_size(mp) | 
|  | #define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str)) | 
|  |  | 
|  | #define mp_tobinary(M, S)  mp_toradix((M), (S), 2) | 
|  | #define mp_tooctal(M, S)   mp_toradix((M), (S), 8) | 
|  | #define mp_todecimal(M, S) mp_toradix((M), (S), 10) | 
|  | #define mp_tohex(M, S)     mp_toradix((M), (S), 16) | 
|  |  | 
|  | /* lowlevel functions, do not call! */ | 
|  | int s_mp_add(mp_int *a, mp_int *b, mp_int *c); | 
|  | int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); | 
|  | #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) | 
|  | int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | 
|  | int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | 
|  | int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | 
|  | int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | 
|  | int fast_s_mp_sqr(mp_int *a, mp_int *b); | 
|  | int s_mp_sqr(mp_int *a, mp_int *b); | 
|  | int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); | 
|  | int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); | 
|  | int mp_karatsuba_sqr(mp_int *a, mp_int *b); | 
|  | int mp_toom_sqr(mp_int *a, mp_int *b); | 
|  | int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); | 
|  | int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); | 
|  | int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); | 
|  | int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); | 
|  | int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y); | 
|  | void bn_reverse(unsigned char *s, int len); | 
|  |  | 
|  | extern const char *mp_s_rmap; | 
|  |  | 
|  | #define PK_PRIVATE            0        /* PK private keys */ | 
|  | #define PK_PUBLIC             1        /* PK public keys */ | 
|  |  | 
|  | /* Min and Max RSA key sizes (in bits) */ | 
|  | #define MIN_RSA_SIZE 384 | 
|  | #define MAX_RSA_SIZE 16384 | 
|  |  | 
|  | typedef struct Rsa_key { | 
|  | int type; | 
|  | mp_int e, d, N, p, q, qP, dP, dQ; | 
|  | } rsa_key; | 
|  |  | 
|  | int rsa_make_key(int size, long e, rsa_key *key); | 
|  |  | 
|  | int rsa_exptmod(const unsigned char *in,   unsigned long inlen, | 
|  | unsigned char *out,  unsigned long *outlen, int which, | 
|  | rsa_key *key); | 
|  |  | 
|  | void rsa_free(rsa_key *key); | 
|  |  | 
|  | #endif /* __WINE_TOMCRYPT_H_ */ |