| /* |
| * Copyright (C) 2007 Google (Evan Stade) |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA |
| */ |
| |
| #include <stdarg.h> |
| #include <math.h> |
| |
| #include "windef.h" |
| #include "winbase.h" |
| #include "winuser.h" |
| #include "wingdi.h" |
| #include "gdiplus.h" |
| #include "gdiplus_private.h" |
| #include "wine/debug.h" |
| |
| WINE_DEFAULT_DEBUG_CHANNEL(gdiplus); |
| |
| /* looks-right constants */ |
| #define TENSION_CONST (0.3) |
| #define ANCHOR_WIDTH (2.0) |
| #define MAX_ITERS (50) |
| |
| /* Converts angle (in degrees) to x/y coordinates */ |
| static void deg2xy(REAL angle, REAL x_0, REAL y_0, REAL *x, REAL *y) |
| { |
| REAL radAngle, hypotenuse; |
| |
| radAngle = deg2rad(angle); |
| hypotenuse = 50.0; /* arbitrary */ |
| |
| *x = x_0 + cos(radAngle) * hypotenuse; |
| *y = y_0 + sin(radAngle) * hypotenuse; |
| } |
| |
| /* GdipDrawPie/GdipFillPie helper function */ |
| static GpStatus draw_pie(GpGraphics *graphics, HBRUSH gdibrush, HPEN gdipen, |
| REAL x, REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle) |
| { |
| INT save_state; |
| REAL x_0, y_0, x_1, y_1, x_2, y_2; |
| |
| if(!graphics) |
| return InvalidParameter; |
| |
| save_state = SaveDC(graphics->hdc); |
| EndPath(graphics->hdc); |
| SelectObject(graphics->hdc, gdipen); |
| SelectObject(graphics->hdc, gdibrush); |
| |
| x_0 = x + (width/2.0); |
| y_0 = y + (height/2.0); |
| |
| deg2xy(startAngle+sweepAngle, x_0, y_0, &x_1, &y_1); |
| deg2xy(startAngle, x_0, y_0, &x_2, &y_2); |
| |
| Pie(graphics->hdc, roundr(x), roundr(y), roundr(x+width), roundr(y+height), |
| roundr(x_1), roundr(y_1), roundr(x_2), roundr(y_2)); |
| |
| RestoreDC(graphics->hdc, save_state); |
| |
| return Ok; |
| } |
| |
| /* GdipDrawCurve helper function. |
| * Calculates Bezier points from cardinal spline points. */ |
| static void calc_curve_bezier(CONST GpPointF *pts, REAL tension, REAL *x1, |
| REAL *y1, REAL *x2, REAL *y2) |
| { |
| REAL xdiff, ydiff; |
| |
| /* calculate tangent */ |
| xdiff = pts[2].X - pts[0].X; |
| ydiff = pts[2].Y - pts[0].Y; |
| |
| /* apply tangent to get control points */ |
| *x1 = pts[1].X - tension * xdiff; |
| *y1 = pts[1].Y - tension * ydiff; |
| *x2 = pts[1].X + tension * xdiff; |
| *y2 = pts[1].Y + tension * ydiff; |
| } |
| |
| /* GdipDrawCurve helper function. |
| * Calculates Bezier points from cardinal spline endpoints. */ |
| static void calc_curve_bezier_endp(REAL xend, REAL yend, REAL xadj, REAL yadj, |
| REAL tension, REAL *x, REAL *y) |
| { |
| /* tangent at endpoints is the line from the endpoint to the adjacent point */ |
| *x = roundr(tension * (xadj - xend) + xend); |
| *y = roundr(tension * (yadj - yend) + yend); |
| } |
| |
| /* Draws the linecap the specified color and size on the hdc. The linecap is in |
| * direction of the line from x1, y1 to x2, y2 and is anchored on x2, y2. */ |
| static void draw_cap(HDC hdc, COLORREF color, GpLineCap cap, REAL size, |
| REAL x1, REAL y1, REAL x2, REAL y2) |
| { |
| HGDIOBJ oldbrush, oldpen; |
| HBRUSH brush; |
| HPEN pen; |
| POINT pt[4]; |
| REAL theta, dsmall, dbig, dx, dy, invert; |
| |
| if(x2 != x1) |
| theta = atan((y2 - y1) / (x2 - x1)); |
| else if(y2 != y1){ |
| theta = M_PI_2 * (y2 > y1 ? 1.0 : -1.0); |
| } |
| else |
| return; |
| |
| invert = ((x2 - x1) >= 0.0 ? 1.0 : -1.0); |
| brush = CreateSolidBrush(color); |
| pen = CreatePen(PS_SOLID, 1, color); |
| oldbrush = SelectObject(hdc, brush); |
| oldpen = SelectObject(hdc, pen); |
| |
| switch(cap){ |
| case LineCapFlat: |
| break; |
| case LineCapSquare: |
| case LineCapSquareAnchor: |
| case LineCapDiamondAnchor: |
| size = size * (cap & LineCapNoAnchor ? ANCHOR_WIDTH : 1.0) / 2.0; |
| if(cap == LineCapDiamondAnchor){ |
| dsmall = cos(theta + M_PI_2) * size; |
| dbig = sin(theta + M_PI_2) * size; |
| } |
| else{ |
| dsmall = cos(theta + M_PI_4) * size; |
| dbig = sin(theta + M_PI_4) * size; |
| } |
| |
| /* calculating the latter points from the earlier points makes them |
| * look a little better because of rounding issues */ |
| pt[0].x = roundr(x2 - dsmall); |
| pt[1].x = roundr(((REAL)pt[0].x) + dbig + dsmall); |
| |
| pt[0].y = roundr(y2 - dbig); |
| pt[3].y = roundr(((REAL)pt[0].y) + dsmall + dbig); |
| |
| pt[1].y = roundr(y2 - dsmall); |
| pt[2].y = roundr(dbig + dsmall + ((REAL)pt[1].y)); |
| |
| pt[3].x = roundr(x2 - dbig); |
| pt[2].x = roundr(((REAL)pt[3].x) + dsmall + dbig); |
| |
| Polygon(hdc, pt, 4); |
| |
| break; |
| case LineCapArrowAnchor: |
| size = size * 4.0 / sqrt(3.0); |
| |
| dx = cos(M_PI / 6.0 + theta) * size * invert; |
| dy = sin(M_PI / 6.0 + theta) * size * invert; |
| |
| pt[0].x = roundr(x2 - dx); |
| pt[0].y = roundr(y2 - dy); |
| |
| dx = cos(- M_PI / 6.0 + theta) * size * invert; |
| dy = sin(- M_PI / 6.0 + theta) * size * invert; |
| |
| pt[1].x = roundr(x2 - dx); |
| pt[1].y = roundr(y2 - dy); |
| |
| pt[2].x = roundr(x2); |
| pt[2].y = roundr(y2); |
| |
| Polygon(hdc, pt, 3); |
| |
| break; |
| case LineCapRoundAnchor: |
| dx = dy = ANCHOR_WIDTH * size / 2.0; |
| |
| x2 = (REAL) roundr(x2 - dx); |
| y2 = (REAL) roundr(y2 - dy); |
| |
| Ellipse(hdc, (INT) x2, (INT) y2, roundr(x2 + 2.0 * dx), |
| roundr(y2 + 2.0 * dy)); |
| break; |
| case LineCapTriangle: |
| size = size / 2.0; |
| dx = cos(M_PI_2 + theta) * size; |
| dy = sin(M_PI_2 + theta) * size; |
| |
| /* Using roundr here can make the triangle float off the end of the |
| * line. */ |
| pt[0].x = ((x2 - x1) >= 0 ? floorf(x2 - dx) : ceilf(x2 - dx)); |
| pt[0].y = ((y2 - y1) >= 0 ? floorf(y2 - dy) : ceilf(y2 - dy)); |
| pt[1].x = roundr(pt[0].x + 2.0 * dx); |
| pt[1].y = roundr(pt[0].y + 2.0 * dy); |
| |
| dx = cos(theta) * size * invert; |
| dy = sin(theta) * size * invert; |
| |
| pt[2].x = roundr(x2 + dx); |
| pt[2].y = roundr(y2 + dy); |
| |
| Polygon(hdc, pt, 3); |
| |
| break; |
| case LineCapRound: |
| dx = -cos(M_PI_2 + theta) * size * invert; |
| dy = -sin(M_PI_2 + theta) * size * invert; |
| |
| pt[0].x = ((x2 - x1) >= 0 ? floorf(x2 - dx) : ceilf(x2 - dx)); |
| pt[0].y = ((y2 - y1) >= 0 ? floorf(y2 - dy) : ceilf(y2 - dy)); |
| pt[1].x = roundr(pt[0].x + 2.0 * dx); |
| pt[1].y = roundr(pt[0].y + 2.0 * dy); |
| |
| dx = dy = size / 2.0; |
| |
| x2 = (REAL) roundr(x2 - dx); |
| y2 = (REAL) roundr(y2 - dy); |
| |
| Pie(hdc, (INT) x2, (INT) y2, roundr(x2 + 2.0 * dx), |
| roundr(y2 + 2.0 * dy), pt[0].x, pt[0].y, pt[1].x, pt[1].y); |
| break; |
| case LineCapCustom: |
| FIXME("line cap not implemented\n"); |
| default: |
| break; |
| } |
| |
| SelectObject(hdc, oldbrush); |
| SelectObject(hdc, oldpen); |
| DeleteObject(brush); |
| DeleteObject(pen); |
| } |
| |
| /* Shortens the line by the given percent by changing x2, y2. |
| * If percent is > 1.0 then the line will change direction. */ |
| static void shorten_line_percent(REAL x1, REAL y1, REAL *x2, REAL *y2, REAL percent) |
| { |
| REAL dist, theta, dx, dy; |
| |
| if((y1 == *y2) && (x1 == *x2)) |
| return; |
| |
| dist = sqrt((*x2 - x1) * (*x2 - x1) + (*y2 - y1) * (*y2 - y1)) * percent; |
| theta = (*x2 == x1 ? M_PI_2 : atan((*y2 - y1) / (*x2 - x1))); |
| dx = cos(theta) * dist; |
| dy = sin(theta) * dist; |
| |
| *x2 = *x2 + fabs(dx) * (*x2 > x1 ? -1.0 : 1.0); |
| *y2 = *y2 + fabs(dy) * (*y2 > y1 ? -1.0 : 1.0); |
| } |
| |
| /* Shortens the line by the given amount by changing x2, y2. |
| * If the amount is greater than the distance, the line will become length 0. */ |
| static void shorten_line_amt(REAL x1, REAL y1, REAL *x2, REAL *y2, REAL amt) |
| { |
| REAL dx, dy, percent; |
| |
| dx = *x2 - x1; |
| dy = *y2 - y1; |
| if(dx == 0 && dy == 0) |
| return; |
| |
| percent = amt / sqrt(dx * dx + dy * dy); |
| if(percent >= 1.0){ |
| *x2 = x1; |
| *y2 = y1; |
| return; |
| } |
| |
| shorten_line_percent(x1, y1, x2, y2, percent); |
| } |
| |
| /* Draws lines between the given points, and if caps is true then draws an endcap |
| * at the end of the last line. FIXME: Startcaps not implemented. */ |
| static GpStatus draw_polyline(HDC hdc, GpPen *pen, GDIPCONST GpPointF * pt, |
| INT count, BOOL caps) |
| { |
| POINT *pti; |
| REAL x = pt[count - 1].X, y = pt[count - 1].Y; |
| INT i; |
| GpStatus status = GenericError; |
| |
| if(!count) |
| return Ok; |
| |
| pti = GdipAlloc(count * sizeof(POINT)); |
| |
| if(!pti){ |
| status = OutOfMemory; |
| goto end; |
| } |
| |
| if(caps){ |
| if(pen->endcap == LineCapArrowAnchor) |
| shorten_line_amt(pt[count-2].X, pt[count-2].Y, &x, &y, pen->width); |
| |
| draw_cap(hdc, pen->color, pen->endcap, pen->width, pt[count-2].X, |
| pt[count-2].Y, pt[count - 1].X, pt[count - 1].Y); |
| } |
| |
| for(i = 0; i < count - 1; i ++){ |
| pti[i].x = roundr(pt[i].X); |
| pti[i].y = roundr(pt[i].Y); |
| } |
| |
| pti[i].x = roundr(x); |
| pti[i].y = roundr(y); |
| |
| Polyline(hdc, pti, count); |
| |
| end: |
| GdipFree(pti); |
| |
| return status; |
| } |
| |
| /* Conducts a linear search to find the bezier points that will back off |
| * the endpoint of the curve by a distance of amt. Linear search works |
| * better than binary in this case because there are multiple solutions, |
| * and binary searches often find a bad one. I don't think this is what |
| * Windows does but short of rendering the bezier without GDI's help it's |
| * the best we can do. */ |
| static void shorten_bezier_amt(GpPointF * pt, REAL amt) |
| { |
| GpPointF origpt[4]; |
| REAL percent = 0.00, dx, dy, origx = pt[3].X, origy = pt[3].Y, diff = -1.0; |
| INT i; |
| |
| memcpy(origpt, pt, sizeof(GpPointF) * 4); |
| |
| for(i = 0; (i < MAX_ITERS) && (diff < amt); i++){ |
| /* reset bezier points to original values */ |
| memcpy(pt, origpt, sizeof(GpPointF) * 4); |
| /* Perform magic on bezier points. Order is important here.*/ |
| shorten_line_percent(pt[2].X, pt[2].Y, &pt[3].X, &pt[3].Y, percent); |
| shorten_line_percent(pt[1].X, pt[1].Y, &pt[2].X, &pt[2].Y, percent); |
| shorten_line_percent(pt[2].X, pt[2].Y, &pt[3].X, &pt[3].Y, percent); |
| shorten_line_percent(pt[0].X, pt[0].Y, &pt[1].X, &pt[1].Y, percent); |
| shorten_line_percent(pt[1].X, pt[1].Y, &pt[2].X, &pt[2].Y, percent); |
| shorten_line_percent(pt[2].X, pt[2].Y, &pt[3].X, &pt[3].Y, percent); |
| |
| dx = pt[3].X - origx; |
| dy = pt[3].Y - origy; |
| |
| diff = sqrt(dx * dx + dy * dy); |
| percent += 0.0005 * amt; |
| } |
| } |
| |
| /* Draws bezier curves between given points, and if caps is true then draws an |
| * endcap at the end of the last line. FIXME: Startcaps not implemented. */ |
| static GpStatus draw_polybezier(HDC hdc, GpPen *pen, GDIPCONST GpPointF * pt, |
| INT count, BOOL caps) |
| { |
| POINT *pti; |
| GpPointF *ptf; |
| INT i; |
| GpStatus status = GenericError; |
| |
| if(!count) |
| return Ok; |
| |
| pti = GdipAlloc(count * sizeof(POINT)); |
| ptf = GdipAlloc(4 * sizeof(GpPointF)); |
| |
| if(!pti || !ptf){ |
| status = OutOfMemory; |
| goto end; |
| } |
| |
| memcpy(ptf, &pt[count-4], 4 * sizeof(GpPointF)); |
| |
| if(caps){ |
| if(pen->endcap == LineCapArrowAnchor) |
| shorten_bezier_amt(ptf, pen->width); |
| |
| /* the direction of the line cap is parallel to the direction at the |
| * end of the bezier (which, if it has been shortened, is not the same |
| * as the direction from pt[count-2] to pt[count-1]) */ |
| draw_cap(hdc, pen->color, pen->endcap, pen->width, |
| pt[count - 1].X - (ptf[3].X - ptf[2].X), |
| pt[count - 1].Y - (ptf[3].Y - ptf[2].Y), |
| pt[count - 1].X, pt[count - 1].Y); |
| } |
| |
| for(i = 0; i < count - 4; i ++){ |
| pti[i].x = roundr(pt[i].X); |
| pti[i].y = roundr(pt[i].Y); |
| } |
| for(i = 0; i < 4; i ++){ |
| pti[i + count - 4].x = roundr(ptf[i].X); |
| pti[i + count - 4].y = roundr(ptf[i].Y); |
| } |
| |
| PolyBezier(hdc, pti, count); |
| |
| status = Ok; |
| |
| end: |
| GdipFree(pti); |
| GdipFree(ptf); |
| |
| return status; |
| } |
| |
| /* Converts from gdiplus path point type to gdi path point type. */ |
| static BYTE convert_path_point_type(BYTE type) |
| { |
| BYTE ret; |
| |
| switch(type & PathPointTypePathTypeMask){ |
| case PathPointTypeBezier: |
| ret = PT_BEZIERTO; |
| break; |
| case PathPointTypeLine: |
| ret = PT_LINETO; |
| break; |
| case PathPointTypeStart: |
| ret = PT_MOVETO; |
| break; |
| default: |
| ERR("Bad point type\n"); |
| return 0; |
| } |
| |
| if(type & PathPointTypeCloseSubpath) |
| ret |= PT_CLOSEFIGURE; |
| |
| return ret; |
| } |
| |
| /* Draws a combination of bezier curves and lines between points. */ |
| static GpStatus draw_poly(HDC hdc, GpPen *pen, GDIPCONST GpPointF * pt, |
| GDIPCONST BYTE * types, INT count, BOOL caps) |
| { |
| POINT *pti = GdipAlloc(count * sizeof(POINT)); |
| BYTE *tp = GdipAlloc(count); |
| GpPointF *ptf = NULL; |
| REAL x = pt[count - 1].X, y = pt[count - 1].Y; |
| INT i; |
| GpStatus status = GenericError; |
| |
| if(!count){ |
| status = Ok; |
| goto end; |
| } |
| if(!pti || !tp){ |
| status = OutOfMemory; |
| goto end; |
| } |
| |
| for(i = 0; i < count; i++){ |
| if((types[i] & PathPointTypePathTypeMask) == PathPointTypeBezier){ |
| if((i + 2 >= count) || !(types[i + 1] & PathPointTypeBezier) |
| || !(types[i + 1] & PathPointTypeBezier)){ |
| ERR("Bad bezier points\n"); |
| goto end; |
| } |
| |
| i += 2; |
| } |
| } |
| |
| if((types[count - 1] & PathPointTypePathTypeMask) == PathPointTypeBezier){ |
| ptf = GdipAlloc(4 * sizeof(GpPointF)); |
| memcpy(ptf, &pt[count-4], 4 * sizeof(GpPointF)); |
| |
| if(caps){ |
| if(pen->endcap == LineCapArrowAnchor) |
| shorten_bezier_amt(ptf, pen->width); |
| |
| draw_cap(hdc, pen->color, pen->endcap, pen->width, |
| pt[count - 1].X - (ptf[3].X - ptf[2].X), |
| pt[count - 1].Y - (ptf[3].Y - ptf[2].Y), |
| pt[count - 1].X, pt[count - 1].Y); |
| } |
| for(i = 0; i < 4; i ++){ |
| pti[i + count - 4].x = roundr(ptf[i].X); |
| pti[i + count - 4].y = roundr(ptf[i].Y); |
| } |
| for(i = 0; i < count - 4; i ++){ |
| pti[i].x = roundr(pt[i].X); |
| pti[i].y = roundr(pt[i].Y); |
| } |
| } |
| else if((types[count - 1] & PathPointTypePathTypeMask) == PathPointTypeLine){ |
| if(caps){ |
| if(pen->endcap == LineCapArrowAnchor) |
| shorten_line_amt(pt[count-2].X, pt[count-2].Y, &x, &y, pen->width); |
| |
| draw_cap(hdc, pen->color, pen->endcap, pen->width, pt[count-2].X, |
| pt[count-2].Y, pt[count - 1].X, pt[count - 1].Y); |
| } |
| pti[count - 1].x = roundr(x); |
| pti[count - 1].y = roundr(y); |
| for(i = 0; i < count - 1; i ++){ |
| pti[i].x = roundr(pt[i].X); |
| pti[i].y = roundr(pt[i].Y); |
| } |
| } |
| else{ |
| ERR("Bad path last point\n"); |
| goto end; |
| } |
| |
| for(i = 0; i < count; i++){ |
| tp[i] = convert_path_point_type(types[i]); |
| } |
| |
| PolyDraw(hdc, pti, tp, count); |
| |
| status = Ok; |
| |
| end: |
| GdipFree(pti); |
| GdipFree(ptf); |
| GdipFree(tp); |
| |
| return status; |
| } |
| |
| GpStatus WINGDIPAPI GdipCreateFromHDC(HDC hdc, GpGraphics **graphics) |
| { |
| if(hdc == NULL) |
| return OutOfMemory; |
| |
| if(graphics == NULL) |
| return InvalidParameter; |
| |
| *graphics = GdipAlloc(sizeof(GpGraphics)); |
| if(!*graphics) return OutOfMemory; |
| |
| (*graphics)->hdc = hdc; |
| (*graphics)->hwnd = NULL; |
| (*graphics)->smoothing = SmoothingModeDefault; |
| (*graphics)->compqual = CompositingQualityDefault; |
| (*graphics)->interpolation = InterpolationModeDefault; |
| |
| return Ok; |
| } |
| |
| GpStatus WINGDIPAPI GdipCreateFromHWND(HWND hwnd, GpGraphics **graphics) |
| { |
| GpStatus ret; |
| |
| if((ret = GdipCreateFromHDC(GetDC(hwnd), graphics)) != Ok) |
| return ret; |
| |
| (*graphics)->hwnd = hwnd; |
| |
| return Ok; |
| } |
| |
| GpStatus WINGDIPAPI GdipDeleteGraphics(GpGraphics *graphics) |
| { |
| if(!graphics) return InvalidParameter; |
| if(graphics->hwnd) |
| ReleaseDC(graphics->hwnd, graphics->hdc); |
| |
| HeapFree(GetProcessHeap(), 0, graphics); |
| |
| return Ok; |
| } |
| |
| GpStatus WINGDIPAPI GdipDrawArc(GpGraphics *graphics, GpPen *pen, REAL x, |
| REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle) |
| { |
| INT save_state, num_pts; |
| GpPointF points[MAX_ARC_PTS]; |
| GpStatus retval; |
| |
| if(!graphics || !pen) |
| return InvalidParameter; |
| |
| num_pts = arc2polybezier(points, x, y, width, height, startAngle, sweepAngle); |
| |
| save_state = SaveDC(graphics->hdc); |
| EndPath(graphics->hdc); |
| SelectObject(graphics->hdc, pen->gdipen); |
| |
| retval = draw_polybezier(graphics->hdc, pen, points, num_pts, TRUE); |
| |
| RestoreDC(graphics->hdc, save_state); |
| |
| return retval; |
| } |
| |
| GpStatus WINGDIPAPI GdipDrawBezier(GpGraphics *graphics, GpPen *pen, REAL x1, |
| REAL y1, REAL x2, REAL y2, REAL x3, REAL y3, REAL x4, REAL y4) |
| { |
| INT save_state; |
| GpPointF pt[4]; |
| GpStatus retval; |
| |
| if(!graphics || !pen) |
| return InvalidParameter; |
| |
| pt[0].X = x1; |
| pt[0].Y = y1; |
| pt[1].X = x2; |
| pt[1].Y = y2; |
| pt[2].X = x3; |
| pt[2].Y = y3; |
| pt[3].X = x4; |
| pt[3].Y = y4; |
| |
| save_state = SaveDC(graphics->hdc); |
| EndPath(graphics->hdc); |
| SelectObject(graphics->hdc, pen->gdipen); |
| |
| retval = draw_polybezier(graphics->hdc, pen, pt, 4, TRUE); |
| |
| RestoreDC(graphics->hdc, save_state); |
| |
| return retval; |
| } |
| |
| /* Approximates cardinal spline with Bezier curves. */ |
| GpStatus WINGDIPAPI GdipDrawCurve2(GpGraphics *graphics, GpPen *pen, |
| GDIPCONST GpPointF *points, INT count, REAL tension) |
| { |
| /* PolyBezier expects count*3-2 points. */ |
| INT i, len_pt = count*3-2, save_state; |
| GpPointF *pt; |
| REAL x1, x2, y1, y2; |
| GpStatus retval; |
| |
| if(!graphics || !pen) |
| return InvalidParameter; |
| |
| pt = GdipAlloc(len_pt * sizeof(GpPointF)); |
| tension = tension * TENSION_CONST; |
| |
| calc_curve_bezier_endp(points[0].X, points[0].Y, points[1].X, points[1].Y, |
| tension, &x1, &y1); |
| |
| pt[0].X = points[0].X; |
| pt[0].Y = points[0].Y; |
| pt[1].X = x1; |
| pt[1].Y = y1; |
| |
| for(i = 0; i < count-2; i++){ |
| calc_curve_bezier(&(points[i]), tension, &x1, &y1, &x2, &y2); |
| |
| pt[3*i+2].X = x1; |
| pt[3*i+2].Y = y1; |
| pt[3*i+3].X = points[i+1].X; |
| pt[3*i+3].Y = points[i+1].Y; |
| pt[3*i+4].X = x2; |
| pt[3*i+4].Y = y2; |
| } |
| |
| calc_curve_bezier_endp(points[count-1].X, points[count-1].Y, |
| points[count-2].X, points[count-2].Y, tension, &x1, &y1); |
| |
| pt[len_pt-2].X = x1; |
| pt[len_pt-2].Y = y1; |
| pt[len_pt-1].X = points[count-1].X; |
| pt[len_pt-1].Y = points[count-1].Y; |
| |
| save_state = SaveDC(graphics->hdc); |
| EndPath(graphics->hdc); |
| SelectObject(graphics->hdc, pen->gdipen); |
| |
| retval = draw_polybezier(graphics->hdc, pen, pt, len_pt, TRUE); |
| |
| GdipFree(pt); |
| RestoreDC(graphics->hdc, save_state); |
| |
| return retval; |
| } |
| |
| GpStatus WINGDIPAPI GdipDrawLineI(GpGraphics *graphics, GpPen *pen, INT x1, |
| INT y1, INT x2, INT y2) |
| { |
| INT save_state; |
| GpPointF pt[2]; |
| GpStatus retval; |
| |
| if(!pen || !graphics) |
| return InvalidParameter; |
| |
| pt[0].X = (REAL)x1; |
| pt[0].Y = (REAL)y1; |
| pt[1].X = (REAL)x2; |
| pt[1].Y = (REAL)y2; |
| |
| save_state = SaveDC(graphics->hdc); |
| EndPath(graphics->hdc); |
| SelectObject(graphics->hdc, pen->gdipen); |
| |
| retval = draw_polyline(graphics->hdc, pen, pt, 2, TRUE); |
| |
| RestoreDC(graphics->hdc, save_state); |
| |
| return retval; |
| } |
| |
| GpStatus WINGDIPAPI GdipDrawLines(GpGraphics *graphics, GpPen *pen, GDIPCONST |
| GpPointF *points, INT count) |
| { |
| INT save_state; |
| GpStatus retval; |
| |
| if(!pen || !graphics || (count < 2)) |
| return InvalidParameter; |
| |
| save_state = SaveDC(graphics->hdc); |
| EndPath(graphics->hdc); |
| SelectObject(graphics->hdc, pen->gdipen); |
| |
| retval = draw_polyline(graphics->hdc, pen, points, count, TRUE); |
| |
| RestoreDC(graphics->hdc, save_state); |
| |
| return retval; |
| } |
| |
| GpStatus WINGDIPAPI GdipDrawPath(GpGraphics *graphics, GpPen *pen, GpPath *path) |
| { |
| INT save_state, i, this_fig = 0; |
| GpStatus retval; |
| |
| if(!pen || !graphics) |
| return InvalidParameter; |
| |
| save_state = SaveDC(graphics->hdc); |
| EndPath(graphics->hdc); |
| SelectObject(graphics->hdc, pen->gdipen); |
| |
| for(i = 0; i < path->pathdata.Count; i++){ |
| if(path->pathdata.Types[i] == PathPointTypeStart){ |
| retval = draw_poly(graphics->hdc, pen, |
| &path->pathdata.Points[this_fig], |
| &path->pathdata.Types[this_fig], i - this_fig, TRUE); |
| this_fig = i; |
| |
| if(retval != Ok) |
| goto end; |
| } |
| } |
| |
| retval = draw_poly(graphics->hdc, pen, &path->pathdata.Points[this_fig], |
| &path->pathdata.Types[this_fig], path->pathdata.Count - this_fig, |
| TRUE); |
| |
| end: |
| RestoreDC(graphics->hdc, save_state); |
| |
| return retval; |
| } |
| |
| GpStatus WINGDIPAPI GdipDrawPie(GpGraphics *graphics, GpPen *pen, REAL x, |
| REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle) |
| { |
| if(!pen) |
| return InvalidParameter; |
| |
| return draw_pie(graphics, GetStockObject(NULL_BRUSH), pen->gdipen, x, y, |
| width, height, startAngle, sweepAngle); |
| } |
| |
| GpStatus WINGDIPAPI GdipDrawRectangleI(GpGraphics *graphics, GpPen *pen, INT x, |
| INT y, INT width, INT height) |
| { |
| INT save_state; |
| |
| if(!pen || !graphics) |
| return InvalidParameter; |
| |
| save_state = SaveDC(graphics->hdc); |
| EndPath(graphics->hdc); |
| SelectObject(graphics->hdc, pen->gdipen); |
| SelectObject(graphics->hdc, GetStockObject(NULL_BRUSH)); |
| |
| Rectangle(graphics->hdc, x, y, x + width, y + height); |
| |
| RestoreDC(graphics->hdc, save_state); |
| |
| return Ok; |
| } |
| |
| GpStatus WINGDIPAPI GdipFillPie(GpGraphics *graphics, GpBrush *brush, REAL x, |
| REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle) |
| { |
| if(!brush) |
| return InvalidParameter; |
| |
| return draw_pie(graphics, brush->gdibrush, GetStockObject(NULL_PEN), x, y, |
| width, height, startAngle, sweepAngle); |
| } |
| |
| /* FIXME: Compositing quality is not used anywhere except the getter/setter. */ |
| GpStatus WINGDIPAPI GdipGetCompositingQuality(GpGraphics *graphics, |
| CompositingQuality *quality) |
| { |
| if(!graphics || !quality) |
| return InvalidParameter; |
| |
| *quality = graphics->compqual; |
| |
| return Ok; |
| } |
| |
| /* FIXME: Interpolation mode is not used anywhere except the getter/setter. */ |
| GpStatus WINGDIPAPI GdipGetInterpolationMode(GpGraphics *graphics, |
| InterpolationMode *mode) |
| { |
| if(!graphics || !mode) |
| return InvalidParameter; |
| |
| *mode = graphics->interpolation; |
| |
| return Ok; |
| } |
| |
| /* FIXME: Smoothing mode is not used anywhere except the getter/setter. */ |
| GpStatus WINGDIPAPI GdipGetSmoothingMode(GpGraphics *graphics, SmoothingMode *mode) |
| { |
| if(!graphics || !mode) |
| return InvalidParameter; |
| |
| *mode = graphics->smoothing; |
| |
| return Ok; |
| } |
| |
| GpStatus WINGDIPAPI GdipSetCompositingQuality(GpGraphics *graphics, |
| CompositingQuality quality) |
| { |
| if(!graphics) |
| return InvalidParameter; |
| |
| graphics->compqual = quality; |
| |
| return Ok; |
| } |
| |
| GpStatus WINGDIPAPI GdipSetInterpolationMode(GpGraphics *graphics, |
| InterpolationMode mode) |
| { |
| if(!graphics) |
| return InvalidParameter; |
| |
| graphics->interpolation = mode; |
| |
| return Ok; |
| } |
| |
| GpStatus WINGDIPAPI GdipSetSmoothingMode(GpGraphics *graphics, SmoothingMode mode) |
| { |
| if(!graphics) |
| return InvalidParameter; |
| |
| graphics->smoothing = mode; |
| |
| return Ok; |
| } |