|  | /* | 
|  | * dlls/rsaenh/mpi.c | 
|  | * Multi Precision Integer functions | 
|  | * | 
|  | * Copyright 2004 Michael Jung | 
|  | * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca) | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file contains code from the LibTomCrypt cryptographic | 
|  | * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt | 
|  | * is in the public domain. The code in this file is tailored to | 
|  | * special requirements. Take a look at http://libtomcrypt.org for the | 
|  | * original version. | 
|  | */ | 
|  |  | 
|  | #include <stdarg.h> | 
|  |  | 
|  | #include "windef.h" | 
|  | #include "winbase.h" | 
|  | #include "tomcrypt.h" | 
|  |  | 
|  | /* Known optimal configurations | 
|  | CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF | 
|  | ------------------------------------------------------------- | 
|  | Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-) | 
|  | */ | 
|  | static const int KARATSUBA_MUL_CUTOFF = 88,  /* Min. number of digits before Karatsuba multiplication is used. */ | 
|  | KARATSUBA_SQR_CUTOFF = 128; /* Min. number of digits before Karatsuba squaring is used. */ | 
|  |  | 
|  |  | 
|  | /* trim unused digits */ | 
|  | static void mp_clamp(mp_int *a); | 
|  |  | 
|  | /* compare |a| to |b| */ | 
|  | static int mp_cmp_mag(const mp_int *a, const mp_int *b); | 
|  |  | 
|  | /* Counts the number of lsbs which are zero before the first zero bit */ | 
|  | static int mp_cnt_lsb(const mp_int *a); | 
|  |  | 
|  | /* computes a = B**n mod b without division or multiplication useful for | 
|  | * normalizing numbers in a Montgomery system. | 
|  | */ | 
|  | static int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b); | 
|  |  | 
|  | /* computes x/R == x (mod N) via Montgomery Reduction */ | 
|  | static int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp); | 
|  |  | 
|  | /* setups the montgomery reduction */ | 
|  | static int mp_montgomery_setup(const mp_int *a, mp_digit *mp); | 
|  |  | 
|  | /* Barrett Reduction, computes a (mod b) with a precomputed value c | 
|  | * | 
|  | * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely | 
|  | * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. | 
|  | */ | 
|  | static int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c); | 
|  |  | 
|  | /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | 
|  | static int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d); | 
|  |  | 
|  | /* determines k value for 2k reduction */ | 
|  | static int mp_reduce_2k_setup(const mp_int *a, mp_digit *d); | 
|  |  | 
|  | /* used to setup the Barrett reduction for a given modulus b */ | 
|  | static int mp_reduce_setup(mp_int *a, const mp_int *b); | 
|  |  | 
|  | /* set to a digit */ | 
|  | static void mp_set(mp_int *a, mp_digit b); | 
|  |  | 
|  | /* b = a*a  */ | 
|  | static int mp_sqr(const mp_int *a, mp_int *b); | 
|  |  | 
|  | /* c = a * a (mod b) */ | 
|  | static int mp_sqrmod(const mp_int *a, mp_int *b, mp_int *c); | 
|  |  | 
|  |  | 
|  | static void bn_reverse(unsigned char *s, int len); | 
|  | static int s_mp_add(mp_int *a, mp_int *b, mp_int *c); | 
|  | static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y); | 
|  | #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) | 
|  | static int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); | 
|  | static int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); | 
|  | static int s_mp_sqr(const mp_int *a, mp_int *b); | 
|  | static int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c); | 
|  | static int mp_exptmod_fast(const mp_int *G, const mp_int *X, mp_int *P, mp_int *Y, int mode); | 
|  | static int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c); | 
|  | static int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c); | 
|  | static int mp_karatsuba_sqr(const mp_int *a, mp_int *b); | 
|  |  | 
|  | /* grow as required */ | 
|  | static int mp_grow (mp_int * a, int size) | 
|  | { | 
|  | int     i; | 
|  | mp_digit *tmp; | 
|  |  | 
|  | /* if the alloc size is smaller alloc more ram */ | 
|  | if (a->alloc < size) { | 
|  | /* ensure there are always at least MP_PREC digits extra on top */ | 
|  | size += (MP_PREC * 2) - (size % MP_PREC); | 
|  |  | 
|  | /* reallocate the array a->dp | 
|  | * | 
|  | * We store the return in a temporary variable | 
|  | * in case the operation failed we don't want | 
|  | * to overwrite the dp member of a. | 
|  | */ | 
|  | tmp = HeapReAlloc(GetProcessHeap(), 0, a->dp, sizeof (mp_digit) * size); | 
|  | if (tmp == NULL) { | 
|  | /* reallocation failed but "a" is still valid [can be freed] */ | 
|  | return MP_MEM; | 
|  | } | 
|  |  | 
|  | /* reallocation succeeded so set a->dp */ | 
|  | a->dp = tmp; | 
|  |  | 
|  | /* zero excess digits */ | 
|  | i        = a->alloc; | 
|  | a->alloc = size; | 
|  | for (; i < a->alloc; i++) { | 
|  | a->dp[i] = 0; | 
|  | } | 
|  | } | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* b = a/2 */ | 
|  | static int mp_div_2(const mp_int * a, mp_int * b) | 
|  | { | 
|  | int     x, res, oldused; | 
|  |  | 
|  | /* copy */ | 
|  | if (b->alloc < a->used) { | 
|  | if ((res = mp_grow (b, a->used)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | oldused = b->used; | 
|  | b->used = a->used; | 
|  | { | 
|  | register mp_digit r, rr, *tmpa, *tmpb; | 
|  |  | 
|  | /* source alias */ | 
|  | tmpa = a->dp + b->used - 1; | 
|  |  | 
|  | /* dest alias */ | 
|  | tmpb = b->dp + b->used - 1; | 
|  |  | 
|  | /* carry */ | 
|  | r = 0; | 
|  | for (x = b->used - 1; x >= 0; x--) { | 
|  | /* get the carry for the next iteration */ | 
|  | rr = *tmpa & 1; | 
|  |  | 
|  | /* shift the current digit, add in carry and store */ | 
|  | *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); | 
|  |  | 
|  | /* forward carry to next iteration */ | 
|  | r = rr; | 
|  | } | 
|  |  | 
|  | /* zero excess digits */ | 
|  | tmpb = b->dp + b->used; | 
|  | for (x = b->used; x < oldused; x++) { | 
|  | *tmpb++ = 0; | 
|  | } | 
|  | } | 
|  | b->sign = a->sign; | 
|  | mp_clamp (b); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* swap the elements of two integers, for cases where you can't simply swap the | 
|  | * mp_int pointers around | 
|  | */ | 
|  | static void | 
|  | mp_exch (mp_int * a, mp_int * b) | 
|  | { | 
|  | mp_int  t; | 
|  |  | 
|  | t  = *a; | 
|  | *a = *b; | 
|  | *b = t; | 
|  | } | 
|  |  | 
|  | /* init a new mp_int */ | 
|  | static int mp_init (mp_int * a) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* allocate memory required and clear it */ | 
|  | a->dp = HeapAlloc(GetProcessHeap(), 0, sizeof (mp_digit) * MP_PREC); | 
|  | if (a->dp == NULL) { | 
|  | return MP_MEM; | 
|  | } | 
|  |  | 
|  | /* set the digits to zero */ | 
|  | for (i = 0; i < MP_PREC; i++) { | 
|  | a->dp[i] = 0; | 
|  | } | 
|  |  | 
|  | /* set the used to zero, allocated digits to the default precision | 
|  | * and sign to positive */ | 
|  | a->used  = 0; | 
|  | a->alloc = MP_PREC; | 
|  | a->sign  = MP_ZPOS; | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* init an mp_init for a given size */ | 
|  | static int mp_init_size (mp_int * a, int size) | 
|  | { | 
|  | int x; | 
|  |  | 
|  | /* pad size so there are always extra digits */ | 
|  | size += (MP_PREC * 2) - (size % MP_PREC); | 
|  |  | 
|  | /* alloc mem */ | 
|  | a->dp = HeapAlloc(GetProcessHeap(), 0, sizeof (mp_digit) * size); | 
|  | if (a->dp == NULL) { | 
|  | return MP_MEM; | 
|  | } | 
|  |  | 
|  | /* set the members */ | 
|  | a->used  = 0; | 
|  | a->alloc = size; | 
|  | a->sign  = MP_ZPOS; | 
|  |  | 
|  | /* zero the digits */ | 
|  | for (x = 0; x < size; x++) { | 
|  | a->dp[x] = 0; | 
|  | } | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* clear one (frees)  */ | 
|  | static void | 
|  | mp_clear (mp_int * a) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* only do anything if a hasn't been freed previously */ | 
|  | if (a->dp != NULL) { | 
|  | /* first zero the digits */ | 
|  | for (i = 0; i < a->used; i++) { | 
|  | a->dp[i] = 0; | 
|  | } | 
|  |  | 
|  | /* free ram */ | 
|  | HeapFree(GetProcessHeap(), 0, a->dp); | 
|  |  | 
|  | /* reset members to make debugging easier */ | 
|  | a->dp    = NULL; | 
|  | a->alloc = a->used = 0; | 
|  | a->sign  = MP_ZPOS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* set to zero */ | 
|  | static void | 
|  | mp_zero (mp_int * a) | 
|  | { | 
|  | a->sign = MP_ZPOS; | 
|  | a->used = 0; | 
|  | memset (a->dp, 0, sizeof (mp_digit) * a->alloc); | 
|  | } | 
|  |  | 
|  | /* b = |a| | 
|  | * | 
|  | * Simple function copies the input and fixes the sign to positive | 
|  | */ | 
|  | static int | 
|  | mp_abs (const mp_int * a, mp_int * b) | 
|  | { | 
|  | int     res; | 
|  |  | 
|  | /* copy a to b */ | 
|  | if (a != b) { | 
|  | if ((res = mp_copy (a, b)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* force the sign of b to positive */ | 
|  | b->sign = MP_ZPOS; | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* computes the modular inverse via binary extended euclidean algorithm, | 
|  | * that is c = 1/a mod b | 
|  | * | 
|  | * Based on slow invmod except this is optimized for the case where b is | 
|  | * odd as per HAC Note 14.64 on pp. 610 | 
|  | */ | 
|  | static int | 
|  | fast_mp_invmod (const mp_int * a, mp_int * b, mp_int * c) | 
|  | { | 
|  | mp_int  x, y, u, v, B, D; | 
|  | int     res, neg; | 
|  |  | 
|  | /* 2. [modified] b must be odd   */ | 
|  | if (mp_iseven (b) == 1) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* init all our temps */ | 
|  | if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* x == modulus, y == value to invert */ | 
|  | if ((res = mp_copy (b, &x)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | /* we need y = |a| */ | 
|  | if ((res = mp_abs (a, &y)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | 
|  | if ((res = mp_copy (&x, &u)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | if ((res = mp_copy (&y, &v)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | mp_set (&D, 1); | 
|  |  | 
|  | top: | 
|  | /* 4.  while u is even do */ | 
|  | while (mp_iseven (&u) == 1) { | 
|  | /* 4.1 u = u/2 */ | 
|  | if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | /* 4.2 if B is odd then */ | 
|  | if (mp_isodd (&B) == 1) { | 
|  | if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  | /* B = B/2 */ | 
|  | if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 5.  while v is even do */ | 
|  | while (mp_iseven (&v) == 1) { | 
|  | /* 5.1 v = v/2 */ | 
|  | if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | /* 5.2 if D is odd then */ | 
|  | if (mp_isodd (&D) == 1) { | 
|  | /* D = (D-x)/2 */ | 
|  | if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  | /* D = D/2 */ | 
|  | if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 6.  if u >= v then */ | 
|  | if (mp_cmp (&u, &v) != MP_LT) { | 
|  | /* u = u - v, B = B - D */ | 
|  | if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } else { | 
|  | /* v - v - u, D = D - B */ | 
|  | if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if not zero goto step 4 */ | 
|  | if (mp_iszero (&u) == 0) { | 
|  | goto top; | 
|  | } | 
|  |  | 
|  | /* now a = C, b = D, gcd == g*v */ | 
|  |  | 
|  | /* if v != 1 then there is no inverse */ | 
|  | if (mp_cmp_d (&v, 1) != MP_EQ) { | 
|  | res = MP_VAL; | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | /* b is now the inverse */ | 
|  | neg = a->sign; | 
|  | while (D.sign == MP_NEG) { | 
|  | if ((res = mp_add (&D, b, &D)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  | mp_exch (&D, c); | 
|  | c->sign = neg; | 
|  | res = MP_OKAY; | 
|  |  | 
|  | __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* computes xR**-1 == x (mod N) via Montgomery Reduction | 
|  | * | 
|  | * This is an optimized implementation of montgomery_reduce | 
|  | * which uses the comba method to quickly calculate the columns of the | 
|  | * reduction. | 
|  | * | 
|  | * Based on Algorithm 14.32 on pp.601 of HAC. | 
|  | */ | 
|  | static int | 
|  | fast_mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho) | 
|  | { | 
|  | int     ix, res, olduse; | 
|  | mp_word W[MP_WARRAY]; | 
|  |  | 
|  | /* get old used count */ | 
|  | olduse = x->used; | 
|  |  | 
|  | /* grow a as required */ | 
|  | if (x->alloc < n->used + 1) { | 
|  | if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* first we have to get the digits of the input into | 
|  | * an array of double precision words W[...] | 
|  | */ | 
|  | { | 
|  | register mp_word *_W; | 
|  | register mp_digit *tmpx; | 
|  |  | 
|  | /* alias for the W[] array */ | 
|  | _W   = W; | 
|  |  | 
|  | /* alias for the digits of  x*/ | 
|  | tmpx = x->dp; | 
|  |  | 
|  | /* copy the digits of a into W[0..a->used-1] */ | 
|  | for (ix = 0; ix < x->used; ix++) { | 
|  | *_W++ = *tmpx++; | 
|  | } | 
|  |  | 
|  | /* zero the high words of W[a->used..m->used*2] */ | 
|  | for (; ix < n->used * 2 + 1; ix++) { | 
|  | *_W++ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now we proceed to zero successive digits | 
|  | * from the least significant upwards | 
|  | */ | 
|  | for (ix = 0; ix < n->used; ix++) { | 
|  | /* mu = ai * m' mod b | 
|  | * | 
|  | * We avoid a double precision multiplication (which isn't required) | 
|  | * by casting the value down to a mp_digit.  Note this requires | 
|  | * that W[ix-1] have  the carry cleared (see after the inner loop) | 
|  | */ | 
|  | register mp_digit mu; | 
|  | mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); | 
|  |  | 
|  | /* a = a + mu * m * b**i | 
|  | * | 
|  | * This is computed in place and on the fly.  The multiplication | 
|  | * by b**i is handled by offsetting which columns the results | 
|  | * are added to. | 
|  | * | 
|  | * Note the comba method normally doesn't handle carries in the | 
|  | * inner loop In this case we fix the carry from the previous | 
|  | * column since the Montgomery reduction requires digits of the | 
|  | * result (so far) [see above] to work.  This is | 
|  | * handled by fixing up one carry after the inner loop.  The | 
|  | * carry fixups are done in order so after these loops the | 
|  | * first m->used words of W[] have the carries fixed | 
|  | */ | 
|  | { | 
|  | register int iy; | 
|  | register mp_digit *tmpn; | 
|  | register mp_word *_W; | 
|  |  | 
|  | /* alias for the digits of the modulus */ | 
|  | tmpn = n->dp; | 
|  |  | 
|  | /* Alias for the columns set by an offset of ix */ | 
|  | _W = W + ix; | 
|  |  | 
|  | /* inner loop */ | 
|  | for (iy = 0; iy < n->used; iy++) { | 
|  | *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now fix carry for next digit, W[ix+1] */ | 
|  | W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); | 
|  | } | 
|  |  | 
|  | /* now we have to propagate the carries and | 
|  | * shift the words downward [all those least | 
|  | * significant digits we zeroed]. | 
|  | */ | 
|  | { | 
|  | register mp_digit *tmpx; | 
|  | register mp_word *_W, *_W1; | 
|  |  | 
|  | /* nox fix rest of carries */ | 
|  |  | 
|  | /* alias for current word */ | 
|  | _W1 = W + ix; | 
|  |  | 
|  | /* alias for next word, where the carry goes */ | 
|  | _W = W + ++ix; | 
|  |  | 
|  | for (; ix <= n->used * 2 + 1; ix++) { | 
|  | *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); | 
|  | } | 
|  |  | 
|  | /* copy out, A = A/b**n | 
|  | * | 
|  | * The result is A/b**n but instead of converting from an | 
|  | * array of mp_word to mp_digit than calling mp_rshd | 
|  | * we just copy them in the right order | 
|  | */ | 
|  |  | 
|  | /* alias for destination word */ | 
|  | tmpx = x->dp; | 
|  |  | 
|  | /* alias for shifted double precision result */ | 
|  | _W = W + n->used; | 
|  |  | 
|  | for (ix = 0; ix < n->used + 1; ix++) { | 
|  | *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); | 
|  | } | 
|  |  | 
|  | /* zero oldused digits, if the input a was larger than | 
|  | * m->used+1 we'll have to clear the digits | 
|  | */ | 
|  | for (; ix < olduse; ix++) { | 
|  | *tmpx++ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* set the max used and clamp */ | 
|  | x->used = n->used + 1; | 
|  | mp_clamp (x); | 
|  |  | 
|  | /* if A >= m then A = A - m */ | 
|  | if (mp_cmp_mag (x, n) != MP_LT) { | 
|  | return s_mp_sub (x, n, x); | 
|  | } | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* Fast (comba) multiplier | 
|  | * | 
|  | * This is the fast column-array [comba] multiplier.  It is | 
|  | * designed to compute the columns of the product first | 
|  | * then handle the carries afterwards.  This has the effect | 
|  | * of making the nested loops that compute the columns very | 
|  | * simple and schedulable on super-scalar processors. | 
|  | * | 
|  | * This has been modified to produce a variable number of | 
|  | * digits of output so if say only a half-product is required | 
|  | * you don't have to compute the upper half (a feature | 
|  | * required for fast Barrett reduction). | 
|  | * | 
|  | * Based on Algorithm 14.12 on pp.595 of HAC. | 
|  | * | 
|  | */ | 
|  | static int | 
|  | fast_s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs) | 
|  | { | 
|  | int     olduse, res, pa, ix, iz; | 
|  | mp_digit W[MP_WARRAY]; | 
|  | register mp_word  _W; | 
|  |  | 
|  | /* grow the destination as required */ | 
|  | if (c->alloc < digs) { | 
|  | if ((res = mp_grow (c, digs)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* number of output digits to produce */ | 
|  | pa = MIN(digs, a->used + b->used); | 
|  |  | 
|  | /* clear the carry */ | 
|  | _W = 0; | 
|  | for (ix = 0; ix <= pa; ix++) { | 
|  | int      tx, ty; | 
|  | int      iy; | 
|  | mp_digit *tmpx, *tmpy; | 
|  |  | 
|  | /* get offsets into the two bignums */ | 
|  | ty = MIN(b->used-1, ix); | 
|  | tx = ix - ty; | 
|  |  | 
|  | /* setup temp aliases */ | 
|  | tmpx = a->dp + tx; | 
|  | tmpy = b->dp + ty; | 
|  |  | 
|  | /* This is the number of times the loop will iterate, essentially it's | 
|  | while (tx++ < a->used && ty-- >= 0) { ... } | 
|  | */ | 
|  | iy = MIN(a->used-tx, ty+1); | 
|  |  | 
|  | /* execute loop */ | 
|  | for (iz = 0; iz < iy; ++iz) { | 
|  | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); | 
|  | } | 
|  |  | 
|  | /* store term */ | 
|  | W[ix] = ((mp_digit)_W) & MP_MASK; | 
|  |  | 
|  | /* make next carry */ | 
|  | _W = _W >> ((mp_word)DIGIT_BIT); | 
|  | } | 
|  |  | 
|  | /* setup dest */ | 
|  | olduse  = c->used; | 
|  | c->used = digs; | 
|  |  | 
|  | { | 
|  | register mp_digit *tmpc; | 
|  | tmpc = c->dp; | 
|  | for (ix = 0; ix < digs; ix++) { | 
|  | /* now extract the previous digit [below the carry] */ | 
|  | *tmpc++ = W[ix]; | 
|  | } | 
|  |  | 
|  | /* clear unused digits [that existed in the old copy of c] */ | 
|  | for (; ix < olduse; ix++) { | 
|  | *tmpc++ = 0; | 
|  | } | 
|  | } | 
|  | mp_clamp (c); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* this is a modified version of fast_s_mul_digs that only produces | 
|  | * output digits *above* digs.  See the comments for fast_s_mul_digs | 
|  | * to see how it works. | 
|  | * | 
|  | * This is used in the Barrett reduction since for one of the multiplications | 
|  | * only the higher digits were needed.  This essentially halves the work. | 
|  | * | 
|  | * Based on Algorithm 14.12 on pp.595 of HAC. | 
|  | */ | 
|  | static int | 
|  | fast_s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs) | 
|  | { | 
|  | int     olduse, res, pa, ix, iz; | 
|  | mp_digit W[MP_WARRAY]; | 
|  | mp_word  _W; | 
|  |  | 
|  | /* grow the destination as required */ | 
|  | pa = a->used + b->used; | 
|  | if (c->alloc < pa) { | 
|  | if ((res = mp_grow (c, pa)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* number of output digits to produce */ | 
|  | pa = a->used + b->used; | 
|  | _W = 0; | 
|  | for (ix = digs; ix <= pa; ix++) { | 
|  | int      tx, ty, iy; | 
|  | mp_digit *tmpx, *tmpy; | 
|  |  | 
|  | /* get offsets into the two bignums */ | 
|  | ty = MIN(b->used-1, ix); | 
|  | tx = ix - ty; | 
|  |  | 
|  | /* setup temp aliases */ | 
|  | tmpx = a->dp + tx; | 
|  | tmpy = b->dp + ty; | 
|  |  | 
|  | /* This is the number of times the loop will iterate, essentially it's | 
|  | while (tx++ < a->used && ty-- >= 0) { ... } | 
|  | */ | 
|  | iy = MIN(a->used-tx, ty+1); | 
|  |  | 
|  | /* execute loop */ | 
|  | for (iz = 0; iz < iy; iz++) { | 
|  | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); | 
|  | } | 
|  |  | 
|  | /* store term */ | 
|  | W[ix] = ((mp_digit)_W) & MP_MASK; | 
|  |  | 
|  | /* make next carry */ | 
|  | _W = _W >> ((mp_word)DIGIT_BIT); | 
|  | } | 
|  |  | 
|  | /* setup dest */ | 
|  | olduse  = c->used; | 
|  | c->used = pa; | 
|  |  | 
|  | { | 
|  | register mp_digit *tmpc; | 
|  |  | 
|  | tmpc = c->dp + digs; | 
|  | for (ix = digs; ix <= pa; ix++) { | 
|  | /* now extract the previous digit [below the carry] */ | 
|  | *tmpc++ = W[ix]; | 
|  | } | 
|  |  | 
|  | /* clear unused digits [that existed in the old copy of c] */ | 
|  | for (; ix < olduse; ix++) { | 
|  | *tmpc++ = 0; | 
|  | } | 
|  | } | 
|  | mp_clamp (c); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* fast squaring | 
|  | * | 
|  | * This is the comba method where the columns of the product | 
|  | * are computed first then the carries are computed.  This | 
|  | * has the effect of making a very simple inner loop that | 
|  | * is executed the most | 
|  | * | 
|  | * W2 represents the outer products and W the inner. | 
|  | * | 
|  | * A further optimizations is made because the inner | 
|  | * products are of the form "A * B * 2".  The *2 part does | 
|  | * not need to be computed until the end which is good | 
|  | * because 64-bit shifts are slow! | 
|  | * | 
|  | * Based on Algorithm 14.16 on pp.597 of HAC. | 
|  | * | 
|  | */ | 
|  | /* the jist of squaring... | 
|  |  | 
|  | you do like mult except the offset of the tmpx [one that starts closer to zero] | 
|  | can't equal the offset of tmpy.  So basically you set up iy like before then you min it with | 
|  | (ty-tx) so that it never happens.  You double all those you add in the inner loop | 
|  |  | 
|  | After that loop you do the squares and add them in. | 
|  |  | 
|  | Remove W2 and don't memset W | 
|  |  | 
|  | */ | 
|  |  | 
|  | static int fast_s_mp_sqr (const mp_int * a, mp_int * b) | 
|  | { | 
|  | int       olduse, res, pa, ix, iz; | 
|  | mp_digit   W[MP_WARRAY], *tmpx; | 
|  | mp_word   W1; | 
|  |  | 
|  | /* grow the destination as required */ | 
|  | pa = a->used + a->used; | 
|  | if (b->alloc < pa) { | 
|  | if ((res = mp_grow (b, pa)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* number of output digits to produce */ | 
|  | W1 = 0; | 
|  | for (ix = 0; ix <= pa; ix++) { | 
|  | int      tx, ty, iy; | 
|  | mp_word  _W; | 
|  | mp_digit *tmpy; | 
|  |  | 
|  | /* clear counter */ | 
|  | _W = 0; | 
|  |  | 
|  | /* get offsets into the two bignums */ | 
|  | ty = MIN(a->used-1, ix); | 
|  | tx = ix - ty; | 
|  |  | 
|  | /* setup temp aliases */ | 
|  | tmpx = a->dp + tx; | 
|  | tmpy = a->dp + ty; | 
|  |  | 
|  | /* This is the number of times the loop will iterate, essentially it's | 
|  | while (tx++ < a->used && ty-- >= 0) { ... } | 
|  | */ | 
|  | iy = MIN(a->used-tx, ty+1); | 
|  |  | 
|  | /* now for squaring tx can never equal ty | 
|  | * we halve the distance since they approach at a rate of 2x | 
|  | * and we have to round because odd cases need to be executed | 
|  | */ | 
|  | iy = MIN(iy, (ty-tx+1)>>1); | 
|  |  | 
|  | /* execute loop */ | 
|  | for (iz = 0; iz < iy; iz++) { | 
|  | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); | 
|  | } | 
|  |  | 
|  | /* double the inner product and add carry */ | 
|  | _W = _W + _W + W1; | 
|  |  | 
|  | /* even columns have the square term in them */ | 
|  | if ((ix&1) == 0) { | 
|  | _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); | 
|  | } | 
|  |  | 
|  | /* store it */ | 
|  | W[ix] = _W; | 
|  |  | 
|  | /* make next carry */ | 
|  | W1 = _W >> ((mp_word)DIGIT_BIT); | 
|  | } | 
|  |  | 
|  | /* setup dest */ | 
|  | olduse  = b->used; | 
|  | b->used = a->used+a->used; | 
|  |  | 
|  | { | 
|  | mp_digit *tmpb; | 
|  | tmpb = b->dp; | 
|  | for (ix = 0; ix < pa; ix++) { | 
|  | *tmpb++ = W[ix] & MP_MASK; | 
|  | } | 
|  |  | 
|  | /* clear unused digits [that existed in the old copy of c] */ | 
|  | for (; ix < olduse; ix++) { | 
|  | *tmpb++ = 0; | 
|  | } | 
|  | } | 
|  | mp_clamp (b); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* computes a = 2**b | 
|  | * | 
|  | * Simple algorithm which zeroes the int, grows it then just sets one bit | 
|  | * as required. | 
|  | */ | 
|  | static int | 
|  | mp_2expt (mp_int * a, int b) | 
|  | { | 
|  | int     res; | 
|  |  | 
|  | /* zero a as per default */ | 
|  | mp_zero (a); | 
|  |  | 
|  | /* grow a to accommodate the single bit */ | 
|  | if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* set the used count of where the bit will go */ | 
|  | a->used = b / DIGIT_BIT + 1; | 
|  |  | 
|  | /* put the single bit in its place */ | 
|  | a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* high level addition (handles signs) */ | 
|  | int mp_add (mp_int * a, mp_int * b, mp_int * c) | 
|  | { | 
|  | int     sa, sb, res; | 
|  |  | 
|  | /* get sign of both inputs */ | 
|  | sa = a->sign; | 
|  | sb = b->sign; | 
|  |  | 
|  | /* handle two cases, not four */ | 
|  | if (sa == sb) { | 
|  | /* both positive or both negative */ | 
|  | /* add their magnitudes, copy the sign */ | 
|  | c->sign = sa; | 
|  | res = s_mp_add (a, b, c); | 
|  | } else { | 
|  | /* one positive, the other negative */ | 
|  | /* subtract the one with the greater magnitude from */ | 
|  | /* the one of the lesser magnitude.  The result gets */ | 
|  | /* the sign of the one with the greater magnitude. */ | 
|  | if (mp_cmp_mag (a, b) == MP_LT) { | 
|  | c->sign = sb; | 
|  | res = s_mp_sub (b, a, c); | 
|  | } else { | 
|  | c->sign = sa; | 
|  | res = s_mp_sub (a, b, c); | 
|  | } | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* single digit addition */ | 
|  | static int | 
|  | mp_add_d (mp_int * a, mp_digit b, mp_int * c) | 
|  | { | 
|  | int     res, ix, oldused; | 
|  | mp_digit *tmpa, *tmpc, mu; | 
|  |  | 
|  | /* grow c as required */ | 
|  | if (c->alloc < a->used + 1) { | 
|  | if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if a is negative and |a| >= b, call c = |a| - b */ | 
|  | if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) { | 
|  | /* temporarily fix sign of a */ | 
|  | a->sign = MP_ZPOS; | 
|  |  | 
|  | /* c = |a| - b */ | 
|  | res = mp_sub_d(a, b, c); | 
|  |  | 
|  | /* fix sign  */ | 
|  | a->sign = c->sign = MP_NEG; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* old number of used digits in c */ | 
|  | oldused = c->used; | 
|  |  | 
|  | /* sign always positive */ | 
|  | c->sign = MP_ZPOS; | 
|  |  | 
|  | /* source alias */ | 
|  | tmpa    = a->dp; | 
|  |  | 
|  | /* destination alias */ | 
|  | tmpc    = c->dp; | 
|  |  | 
|  | /* if a is positive */ | 
|  | if (a->sign == MP_ZPOS) { | 
|  | /* add digit, after this we're propagating | 
|  | * the carry. | 
|  | */ | 
|  | *tmpc   = *tmpa++ + b; | 
|  | mu      = *tmpc >> DIGIT_BIT; | 
|  | *tmpc++ &= MP_MASK; | 
|  |  | 
|  | /* now handle rest of the digits */ | 
|  | for (ix = 1; ix < a->used; ix++) { | 
|  | *tmpc   = *tmpa++ + mu; | 
|  | mu      = *tmpc >> DIGIT_BIT; | 
|  | *tmpc++ &= MP_MASK; | 
|  | } | 
|  | /* set final carry */ | 
|  | ix++; | 
|  | *tmpc++  = mu; | 
|  |  | 
|  | /* setup size */ | 
|  | c->used = a->used + 1; | 
|  | } else { | 
|  | /* a was negative and |a| < b */ | 
|  | c->used  = 1; | 
|  |  | 
|  | /* the result is a single digit */ | 
|  | if (a->used == 1) { | 
|  | *tmpc++  =  b - a->dp[0]; | 
|  | } else { | 
|  | *tmpc++  =  b; | 
|  | } | 
|  |  | 
|  | /* setup count so the clearing of oldused | 
|  | * can fall through correctly | 
|  | */ | 
|  | ix       = 1; | 
|  | } | 
|  |  | 
|  | /* now zero to oldused */ | 
|  | while (ix++ < oldused) { | 
|  | *tmpc++ = 0; | 
|  | } | 
|  | mp_clamp(c); | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* trim unused digits | 
|  | * | 
|  | * This is used to ensure that leading zero digits are | 
|  | * trimed and the leading "used" digit will be non-zero | 
|  | * Typically very fast.  Also fixes the sign if there | 
|  | * are no more leading digits | 
|  | */ | 
|  | void | 
|  | mp_clamp (mp_int * a) | 
|  | { | 
|  | /* decrease used while the most significant digit is | 
|  | * zero. | 
|  | */ | 
|  | while (a->used > 0 && a->dp[a->used - 1] == 0) { | 
|  | --(a->used); | 
|  | } | 
|  |  | 
|  | /* reset the sign flag if used == 0 */ | 
|  | if (a->used == 0) { | 
|  | a->sign = MP_ZPOS; | 
|  | } | 
|  | } | 
|  |  | 
|  | void mp_clear_multi(mp_int *mp, ...) | 
|  | { | 
|  | mp_int* next_mp = mp; | 
|  | va_list args; | 
|  | va_start(args, mp); | 
|  | while (next_mp != NULL) { | 
|  | mp_clear(next_mp); | 
|  | next_mp = va_arg(args, mp_int*); | 
|  | } | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | /* compare two ints (signed)*/ | 
|  | int | 
|  | mp_cmp (const mp_int * a, const mp_int * b) | 
|  | { | 
|  | /* compare based on sign */ | 
|  | if (a->sign != b->sign) { | 
|  | if (a->sign == MP_NEG) { | 
|  | return MP_LT; | 
|  | } else { | 
|  | return MP_GT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compare digits */ | 
|  | if (a->sign == MP_NEG) { | 
|  | /* if negative compare opposite direction */ | 
|  | return mp_cmp_mag(b, a); | 
|  | } else { | 
|  | return mp_cmp_mag(a, b); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compare a digit */ | 
|  | int mp_cmp_d(const mp_int * a, mp_digit b) | 
|  | { | 
|  | /* compare based on sign */ | 
|  | if (a->sign == MP_NEG) { | 
|  | return MP_LT; | 
|  | } | 
|  |  | 
|  | /* compare based on magnitude */ | 
|  | if (a->used > 1) { | 
|  | return MP_GT; | 
|  | } | 
|  |  | 
|  | /* compare the only digit of a to b */ | 
|  | if (a->dp[0] > b) { | 
|  | return MP_GT; | 
|  | } else if (a->dp[0] < b) { | 
|  | return MP_LT; | 
|  | } else { | 
|  | return MP_EQ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compare maginitude of two ints (unsigned) */ | 
|  | int mp_cmp_mag (const mp_int * a, const mp_int * b) | 
|  | { | 
|  | int     n; | 
|  | mp_digit *tmpa, *tmpb; | 
|  |  | 
|  | /* compare based on # of non-zero digits */ | 
|  | if (a->used > b->used) { | 
|  | return MP_GT; | 
|  | } | 
|  |  | 
|  | if (a->used < b->used) { | 
|  | return MP_LT; | 
|  | } | 
|  |  | 
|  | /* alias for a */ | 
|  | tmpa = a->dp + (a->used - 1); | 
|  |  | 
|  | /* alias for b */ | 
|  | tmpb = b->dp + (a->used - 1); | 
|  |  | 
|  | /* compare based on digits  */ | 
|  | for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { | 
|  | if (*tmpa > *tmpb) { | 
|  | return MP_GT; | 
|  | } | 
|  |  | 
|  | if (*tmpa < *tmpb) { | 
|  | return MP_LT; | 
|  | } | 
|  | } | 
|  | return MP_EQ; | 
|  | } | 
|  |  | 
|  | static const int lnz[16] = { | 
|  | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 | 
|  | }; | 
|  |  | 
|  | /* Counts the number of lsbs which are zero before the first zero bit */ | 
|  | int mp_cnt_lsb(const mp_int *a) | 
|  | { | 
|  | int x; | 
|  | mp_digit q, qq; | 
|  |  | 
|  | /* easy out */ | 
|  | if (mp_iszero(a) == 1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* scan lower digits until non-zero */ | 
|  | for (x = 0; x < a->used && a->dp[x] == 0; x++); | 
|  | q = a->dp[x]; | 
|  | x *= DIGIT_BIT; | 
|  |  | 
|  | /* now scan this digit until a 1 is found */ | 
|  | if ((q & 1) == 0) { | 
|  | do { | 
|  | qq  = q & 15; | 
|  | x  += lnz[qq]; | 
|  | q >>= 4; | 
|  | } while (qq == 0); | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* copy, b = a */ | 
|  | int | 
|  | mp_copy (const mp_int * a, mp_int * b) | 
|  | { | 
|  | int     res, n; | 
|  |  | 
|  | /* if dst == src do nothing */ | 
|  | if (a == b) { | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* grow dest */ | 
|  | if (b->alloc < a->used) { | 
|  | if ((res = mp_grow (b, a->used)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* zero b and copy the parameters over */ | 
|  | { | 
|  | register mp_digit *tmpa, *tmpb; | 
|  |  | 
|  | /* pointer aliases */ | 
|  |  | 
|  | /* source */ | 
|  | tmpa = a->dp; | 
|  |  | 
|  | /* destination */ | 
|  | tmpb = b->dp; | 
|  |  | 
|  | /* copy all the digits */ | 
|  | for (n = 0; n < a->used; n++) { | 
|  | *tmpb++ = *tmpa++; | 
|  | } | 
|  |  | 
|  | /* clear high digits */ | 
|  | for (; n < b->used; n++) { | 
|  | *tmpb++ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* copy used count and sign */ | 
|  | b->used = a->used; | 
|  | b->sign = a->sign; | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* returns the number of bits in an int */ | 
|  | int | 
|  | mp_count_bits (const mp_int * a) | 
|  | { | 
|  | int     r; | 
|  | mp_digit q; | 
|  |  | 
|  | /* shortcut */ | 
|  | if (a->used == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* get number of digits and add that */ | 
|  | r = (a->used - 1) * DIGIT_BIT; | 
|  |  | 
|  | /* take the last digit and count the bits in it */ | 
|  | q = a->dp[a->used - 1]; | 
|  | while (q > 0) { | 
|  | ++r; | 
|  | q >>= ((mp_digit) 1); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* calc a value mod 2**b */ | 
|  | static int | 
|  | mp_mod_2d (const mp_int * a, int b, mp_int * c) | 
|  | { | 
|  | int     x, res; | 
|  |  | 
|  | /* if b is <= 0 then zero the int */ | 
|  | if (b <= 0) { | 
|  | mp_zero (c); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* if the modulus is larger than the value than return */ | 
|  | if (b > a->used * DIGIT_BIT) { | 
|  | res = mp_copy (a, c); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* copy */ | 
|  | if ((res = mp_copy (a, c)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* zero digits above the last digit of the modulus */ | 
|  | for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { | 
|  | c->dp[x] = 0; | 
|  | } | 
|  | /* clear the digit that is not completely outside/inside the modulus */ | 
|  | c->dp[b / DIGIT_BIT] &= (1 << ((mp_digit)b % DIGIT_BIT)) - 1; | 
|  | mp_clamp (c); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* shift right a certain amount of digits */ | 
|  | static void mp_rshd (mp_int * a, int b) | 
|  | { | 
|  | int     x; | 
|  |  | 
|  | /* if b <= 0 then ignore it */ | 
|  | if (b <= 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* if b > used then simply zero it and return */ | 
|  | if (a->used <= b) { | 
|  | mp_zero (a); | 
|  | return; | 
|  | } | 
|  |  | 
|  | { | 
|  | register mp_digit *bottom, *top; | 
|  |  | 
|  | /* shift the digits down */ | 
|  |  | 
|  | /* bottom */ | 
|  | bottom = a->dp; | 
|  |  | 
|  | /* top [offset into digits] */ | 
|  | top = a->dp + b; | 
|  |  | 
|  | /* this is implemented as a sliding window where | 
|  | * the window is b-digits long and digits from | 
|  | * the top of the window are copied to the bottom | 
|  | * | 
|  | * e.g. | 
|  |  | 
|  | b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ----> | 
|  | /\                   |      ----> | 
|  | \-------------------/      ----> | 
|  | */ | 
|  | for (x = 0; x < (a->used - b); x++) { | 
|  | *bottom++ = *top++; | 
|  | } | 
|  |  | 
|  | /* zero the top digits */ | 
|  | for (; x < a->used; x++) { | 
|  | *bottom++ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* remove excess digits */ | 
|  | a->used -= b; | 
|  | } | 
|  |  | 
|  | /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ | 
|  | static int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d) | 
|  | { | 
|  | mp_digit D, r, rr; | 
|  | int     x, res; | 
|  | mp_int  t; | 
|  |  | 
|  |  | 
|  | /* if the shift count is <= 0 then we do no work */ | 
|  | if (b <= 0) { | 
|  | res = mp_copy (a, c); | 
|  | if (d != NULL) { | 
|  | mp_zero (d); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if ((res = mp_init (&t)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* get the remainder */ | 
|  | if (d != NULL) { | 
|  | if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* copy */ | 
|  | if ((res = mp_copy (a, c)) != MP_OKAY) { | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* shift by as many digits in the bit count */ | 
|  | if (b >= DIGIT_BIT) { | 
|  | mp_rshd (c, b / DIGIT_BIT); | 
|  | } | 
|  |  | 
|  | /* shift any bit count < DIGIT_BIT */ | 
|  | D = (mp_digit) (b % DIGIT_BIT); | 
|  | if (D != 0) { | 
|  | register mp_digit *tmpc, mask, shift; | 
|  |  | 
|  | /* mask */ | 
|  | mask = (((mp_digit)1) << D) - 1; | 
|  |  | 
|  | /* shift for lsb */ | 
|  | shift = DIGIT_BIT - D; | 
|  |  | 
|  | /* alias */ | 
|  | tmpc = c->dp + (c->used - 1); | 
|  |  | 
|  | /* carry */ | 
|  | r = 0; | 
|  | for (x = c->used - 1; x >= 0; x--) { | 
|  | /* get the lower  bits of this word in a temp */ | 
|  | rr = *tmpc & mask; | 
|  |  | 
|  | /* shift the current word and mix in the carry bits from the previous word */ | 
|  | *tmpc = (*tmpc >> D) | (r << shift); | 
|  | --tmpc; | 
|  |  | 
|  | /* set the carry to the carry bits of the current word found above */ | 
|  | r = rr; | 
|  | } | 
|  | } | 
|  | mp_clamp (c); | 
|  | if (d != NULL) { | 
|  | mp_exch (&t, d); | 
|  | } | 
|  | mp_clear (&t); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* shift left a certain amount of digits */ | 
|  | static int mp_lshd (mp_int * a, int b) | 
|  | { | 
|  | int     x, res; | 
|  |  | 
|  | /* if it's less than zero return */ | 
|  | if (b <= 0) { | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* grow to fit the new digits */ | 
|  | if (a->alloc < a->used + b) { | 
|  | if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | register mp_digit *top, *bottom; | 
|  |  | 
|  | /* increment the used by the shift amount then copy upwards */ | 
|  | a->used += b; | 
|  |  | 
|  | /* top */ | 
|  | top = a->dp + a->used - 1; | 
|  |  | 
|  | /* base */ | 
|  | bottom = a->dp + a->used - 1 - b; | 
|  |  | 
|  | /* much like mp_rshd this is implemented using a sliding window | 
|  | * except the window goes the other way around.  Copying from | 
|  | * the bottom to the top.  see bn_mp_rshd.c for more info. | 
|  | */ | 
|  | for (x = a->used - 1; x >= b; x--) { | 
|  | *top-- = *bottom--; | 
|  | } | 
|  |  | 
|  | /* zero the lower digits */ | 
|  | top = a->dp; | 
|  | for (x = 0; x < b; x++) { | 
|  | *top++ = 0; | 
|  | } | 
|  | } | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* shift left by a certain bit count */ | 
|  | static int mp_mul_2d (const mp_int * a, int b, mp_int * c) | 
|  | { | 
|  | mp_digit d; | 
|  | int      res; | 
|  |  | 
|  | /* copy */ | 
|  | if (a != c) { | 
|  | if ((res = mp_copy (a, c)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (c->alloc < c->used + b/DIGIT_BIT + 1) { | 
|  | if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* shift by as many digits in the bit count */ | 
|  | if (b >= DIGIT_BIT) { | 
|  | if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* shift any bit count < DIGIT_BIT */ | 
|  | d = (mp_digit) (b % DIGIT_BIT); | 
|  | if (d != 0) { | 
|  | register mp_digit *tmpc, shift, mask, r, rr; | 
|  | register int x; | 
|  |  | 
|  | /* bitmask for carries */ | 
|  | mask = (((mp_digit)1) << d) - 1; | 
|  |  | 
|  | /* shift for msbs */ | 
|  | shift = DIGIT_BIT - d; | 
|  |  | 
|  | /* alias */ | 
|  | tmpc = c->dp; | 
|  |  | 
|  | /* carry */ | 
|  | r    = 0; | 
|  | for (x = 0; x < c->used; x++) { | 
|  | /* get the higher bits of the current word */ | 
|  | rr = (*tmpc >> shift) & mask; | 
|  |  | 
|  | /* shift the current word and OR in the carry */ | 
|  | *tmpc = ((*tmpc << d) | r) & MP_MASK; | 
|  | ++tmpc; | 
|  |  | 
|  | /* set the carry to the carry bits of the current word */ | 
|  | r = rr; | 
|  | } | 
|  |  | 
|  | /* set final carry */ | 
|  | if (r != 0) { | 
|  | c->dp[(c->used)++] = r; | 
|  | } | 
|  | } | 
|  | mp_clamp (c); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* multiply by a digit */ | 
|  | static int | 
|  | mp_mul_d (const mp_int * a, mp_digit b, mp_int * c) | 
|  | { | 
|  | mp_digit u, *tmpa, *tmpc; | 
|  | mp_word  r; | 
|  | int      ix, res, olduse; | 
|  |  | 
|  | /* make sure c is big enough to hold a*b */ | 
|  | if (c->alloc < a->used + 1) { | 
|  | if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* get the original destinations used count */ | 
|  | olduse = c->used; | 
|  |  | 
|  | /* set the sign */ | 
|  | c->sign = a->sign; | 
|  |  | 
|  | /* alias for a->dp [source] */ | 
|  | tmpa = a->dp; | 
|  |  | 
|  | /* alias for c->dp [dest] */ | 
|  | tmpc = c->dp; | 
|  |  | 
|  | /* zero carry */ | 
|  | u = 0; | 
|  |  | 
|  | /* compute columns */ | 
|  | for (ix = 0; ix < a->used; ix++) { | 
|  | /* compute product and carry sum for this term */ | 
|  | r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); | 
|  |  | 
|  | /* mask off higher bits to get a single digit */ | 
|  | *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); | 
|  |  | 
|  | /* send carry into next iteration */ | 
|  | u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); | 
|  | } | 
|  |  | 
|  | /* store final carry [if any] */ | 
|  | *tmpc++ = u; | 
|  |  | 
|  | /* now zero digits above the top */ | 
|  | while (ix++ < olduse) { | 
|  | *tmpc++ = 0; | 
|  | } | 
|  |  | 
|  | /* set used count */ | 
|  | c->used = a->used + 1; | 
|  | mp_clamp(c); | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* integer signed division. | 
|  | * c*b + d == a [e.g. a/b, c=quotient, d=remainder] | 
|  | * HAC pp.598 Algorithm 14.20 | 
|  | * | 
|  | * Note that the description in HAC is horribly | 
|  | * incomplete.  For example, it doesn't consider | 
|  | * the case where digits are removed from 'x' in | 
|  | * the inner loop.  It also doesn't consider the | 
|  | * case that y has fewer than three digits, etc.. | 
|  | * | 
|  | * The overall algorithm is as described as | 
|  | * 14.20 from HAC but fixed to treat these cases. | 
|  | */ | 
|  | static int mp_div (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d) | 
|  | { | 
|  | mp_int  q, x, y, t1, t2; | 
|  | int     res, n, t, i, norm, neg; | 
|  |  | 
|  | /* is divisor zero ? */ | 
|  | if (mp_iszero (b) == 1) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* if a < b then q=0, r = a */ | 
|  | if (mp_cmp_mag (a, b) == MP_LT) { | 
|  | if (d != NULL) { | 
|  | res = mp_copy (a, d); | 
|  | } else { | 
|  | res = MP_OKAY; | 
|  | } | 
|  | if (c != NULL) { | 
|  | mp_zero (c); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | q.used = a->used + 2; | 
|  |  | 
|  | if ((res = mp_init (&t1)) != MP_OKAY) { | 
|  | goto __Q; | 
|  | } | 
|  |  | 
|  | if ((res = mp_init (&t2)) != MP_OKAY) { | 
|  | goto __T1; | 
|  | } | 
|  |  | 
|  | if ((res = mp_init_copy (&x, a)) != MP_OKAY) { | 
|  | goto __T2; | 
|  | } | 
|  |  | 
|  | if ((res = mp_init_copy (&y, b)) != MP_OKAY) { | 
|  | goto __X; | 
|  | } | 
|  |  | 
|  | /* fix the sign */ | 
|  | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; | 
|  | x.sign = y.sign = MP_ZPOS; | 
|  |  | 
|  | /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ | 
|  | norm = mp_count_bits(&y) % DIGIT_BIT; | 
|  | if (norm < DIGIT_BIT-1) { | 
|  | norm = (DIGIT_BIT-1) - norm; | 
|  | if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  | if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  | } else { | 
|  | norm = 0; | 
|  | } | 
|  |  | 
|  | /* note hac does 0 based, so if used==5 then it's 0,1,2,3,4, e.g. use 4 */ | 
|  | n = x.used - 1; | 
|  | t = y.used - 1; | 
|  |  | 
|  | /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ | 
|  | if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | while (mp_cmp (&x, &y) != MP_LT) { | 
|  | ++(q.dp[n - t]); | 
|  | if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* reset y by shifting it back down */ | 
|  | mp_rshd (&y, n - t); | 
|  |  | 
|  | /* step 3. for i from n down to (t + 1) */ | 
|  | for (i = n; i >= (t + 1); i--) { | 
|  | if (i > x.used) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* step 3.1 if xi == yt then set q{i-t-1} to b-1, | 
|  | * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ | 
|  | if (x.dp[i] == y.dp[t]) { | 
|  | q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); | 
|  | } else { | 
|  | mp_word tmp; | 
|  | tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); | 
|  | tmp |= ((mp_word) x.dp[i - 1]); | 
|  | tmp /= ((mp_word) y.dp[t]); | 
|  | if (tmp > (mp_word) MP_MASK) | 
|  | tmp = MP_MASK; | 
|  | q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); | 
|  | } | 
|  |  | 
|  | /* while (q{i-t-1} * (yt * b + y{t-1})) > | 
|  | xi * b**2 + xi-1 * b + xi-2 | 
|  |  | 
|  | do q{i-t-1} -= 1; | 
|  | */ | 
|  | q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; | 
|  | do { | 
|  | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; | 
|  |  | 
|  | /* find left hand */ | 
|  | mp_zero (&t1); | 
|  | t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; | 
|  | t1.dp[1] = y.dp[t]; | 
|  | t1.used = 2; | 
|  | if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | /* find right hand */ | 
|  | t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; | 
|  | t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; | 
|  | t2.dp[2] = x.dp[i]; | 
|  | t2.used = 3; | 
|  | } while (mp_cmp_mag(&t1, &t2) == MP_GT); | 
|  |  | 
|  | /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ | 
|  | if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ | 
|  | if (x.sign == MP_NEG) { | 
|  | if ((res = mp_copy (&y, &t1)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  | if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now q is the quotient and x is the remainder | 
|  | * [which we have to normalize] | 
|  | */ | 
|  |  | 
|  | /* get sign before writing to c */ | 
|  | x.sign = x.used == 0 ? MP_ZPOS : a->sign; | 
|  |  | 
|  | if (c != NULL) { | 
|  | mp_clamp (&q); | 
|  | mp_exch (&q, c); | 
|  | c->sign = neg; | 
|  | } | 
|  |  | 
|  | if (d != NULL) { | 
|  | mp_div_2d (&x, norm, &x, NULL); | 
|  | mp_exch (&x, d); | 
|  | } | 
|  |  | 
|  | res = MP_OKAY; | 
|  |  | 
|  | __Y:mp_clear (&y); | 
|  | __X:mp_clear (&x); | 
|  | __T2:mp_clear (&t2); | 
|  | __T1:mp_clear (&t1); | 
|  | __Q:mp_clear (&q); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static BOOL s_is_power_of_two(mp_digit b, int *p) | 
|  | { | 
|  | int x; | 
|  |  | 
|  | for (x = 1; x < DIGIT_BIT; x++) { | 
|  | if (b == (((mp_digit)1)<<x)) { | 
|  | *p = x; | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* single digit division (based on routine from MPI) */ | 
|  | static int mp_div_d (const mp_int * a, mp_digit b, mp_int * c, mp_digit * d) | 
|  | { | 
|  | mp_int  q; | 
|  | mp_word w; | 
|  | mp_digit t; | 
|  | int     res, ix; | 
|  |  | 
|  | /* cannot divide by zero */ | 
|  | if (b == 0) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* quick outs */ | 
|  | if (b == 1 || mp_iszero(a) == 1) { | 
|  | if (d != NULL) { | 
|  | *d = 0; | 
|  | } | 
|  | if (c != NULL) { | 
|  | return mp_copy(a, c); | 
|  | } | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* power of two ? */ | 
|  | if (s_is_power_of_two(b, &ix)) { | 
|  | if (d != NULL) { | 
|  | *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1); | 
|  | } | 
|  | if (c != NULL) { | 
|  | return mp_div_2d(a, ix, c, NULL); | 
|  | } | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* no easy answer [c'est la vie].  Just division */ | 
|  | if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | q.used = a->used; | 
|  | q.sign = a->sign; | 
|  | w = 0; | 
|  | for (ix = a->used - 1; ix >= 0; ix--) { | 
|  | w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); | 
|  |  | 
|  | if (w >= b) { | 
|  | t = (mp_digit)(w / b); | 
|  | w -= ((mp_word)t) * ((mp_word)b); | 
|  | } else { | 
|  | t = 0; | 
|  | } | 
|  | q.dp[ix] = t; | 
|  | } | 
|  |  | 
|  | if (d != NULL) { | 
|  | *d = (mp_digit)w; | 
|  | } | 
|  |  | 
|  | if (c != NULL) { | 
|  | mp_clamp(&q); | 
|  | mp_exch(&q, c); | 
|  | } | 
|  | mp_clear(&q); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. | 
|  | * | 
|  | * Based on algorithm from the paper | 
|  | * | 
|  | * "Generating Efficient Primes for Discrete Log Cryptosystems" | 
|  | *                 Chae Hoon Lim, Pil Loong Lee, | 
|  | *          POSTECH Information Research Laboratories | 
|  | * | 
|  | * The modulus must be of a special format [see manual] | 
|  | * | 
|  | * Has been modified to use algorithm 7.10 from the LTM book instead | 
|  | * | 
|  | * Input x must be in the range 0 <= x <= (n-1)**2 | 
|  | */ | 
|  | static int | 
|  | mp_dr_reduce (mp_int * x, const mp_int * n, mp_digit k) | 
|  | { | 
|  | int      err, i, m; | 
|  | mp_word  r; | 
|  | mp_digit mu, *tmpx1, *tmpx2; | 
|  |  | 
|  | /* m = digits in modulus */ | 
|  | m = n->used; | 
|  |  | 
|  | /* ensure that "x" has at least 2m digits */ | 
|  | if (x->alloc < m + m) { | 
|  | if ((err = mp_grow (x, m + m)) != MP_OKAY) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* top of loop, this is where the code resumes if | 
|  | * another reduction pass is required. | 
|  | */ | 
|  | top: | 
|  | /* aliases for digits */ | 
|  | /* alias for lower half of x */ | 
|  | tmpx1 = x->dp; | 
|  |  | 
|  | /* alias for upper half of x, or x/B**m */ | 
|  | tmpx2 = x->dp + m; | 
|  |  | 
|  | /* set carry to zero */ | 
|  | mu = 0; | 
|  |  | 
|  | /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ | 
|  | for (i = 0; i < m; i++) { | 
|  | r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu; | 
|  | *tmpx1++  = (mp_digit)(r & MP_MASK); | 
|  | mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); | 
|  | } | 
|  |  | 
|  | /* set final carry */ | 
|  | *tmpx1++ = mu; | 
|  |  | 
|  | /* zero words above m */ | 
|  | for (i = m + 1; i < x->used; i++) { | 
|  | *tmpx1++ = 0; | 
|  | } | 
|  |  | 
|  | /* clamp, sub and return */ | 
|  | mp_clamp (x); | 
|  |  | 
|  | /* if x >= n then subtract and reduce again | 
|  | * Each successive "recursion" makes the input smaller and smaller. | 
|  | */ | 
|  | if (mp_cmp_mag (x, n) != MP_LT) { | 
|  | s_mp_sub(x, n, x); | 
|  | goto top; | 
|  | } | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* sets the value of "d" required for mp_dr_reduce */ | 
|  | static void mp_dr_setup(const mp_int *a, mp_digit *d) | 
|  | { | 
|  | /* the casts are required if DIGIT_BIT is one less than | 
|  | * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] | 
|  | */ | 
|  | *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - | 
|  | ((mp_word)a->dp[0])); | 
|  | } | 
|  |  | 
|  | /* this is a shell function that calls either the normal or Montgomery | 
|  | * exptmod functions.  Originally the call to the montgomery code was | 
|  | * embedded in the normal function but that wasted a lot of stack space | 
|  | * for nothing (since 99% of the time the Montgomery code would be called) | 
|  | */ | 
|  | int mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y) | 
|  | { | 
|  | int dr; | 
|  |  | 
|  | /* modulus P must be positive */ | 
|  | if (P->sign == MP_NEG) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* if exponent X is negative we have to recurse */ | 
|  | if (X->sign == MP_NEG) { | 
|  | mp_int tmpG, tmpX; | 
|  | int err; | 
|  |  | 
|  | /* first compute 1/G mod P */ | 
|  | if ((err = mp_init(&tmpG)) != MP_OKAY) { | 
|  | return err; | 
|  | } | 
|  | if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { | 
|  | mp_clear(&tmpG); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* now get |X| */ | 
|  | if ((err = mp_init(&tmpX)) != MP_OKAY) { | 
|  | mp_clear(&tmpG); | 
|  | return err; | 
|  | } | 
|  | if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { | 
|  | mp_clear_multi(&tmpG, &tmpX, NULL); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* and now compute (1/G)**|X| instead of G**X [X < 0] */ | 
|  | err = mp_exptmod(&tmpG, &tmpX, P, Y); | 
|  | mp_clear_multi(&tmpG, &tmpX, NULL); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | dr = 0; | 
|  |  | 
|  | /* if the modulus is odd use the fast method */ | 
|  | if (mp_isodd (P) == 1) { | 
|  | return mp_exptmod_fast (G, X, P, Y, dr); | 
|  | } else { | 
|  | /* otherwise use the generic Barrett reduction technique */ | 
|  | return s_mp_exptmod (G, X, P, Y); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 | 
|  | * | 
|  | * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. | 
|  | * The value of k changes based on the size of the exponent. | 
|  | * | 
|  | * Uses Montgomery or Diminished Radix reduction [whichever appropriate] | 
|  | */ | 
|  |  | 
|  | int | 
|  | mp_exptmod_fast (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y, int redmode) | 
|  | { | 
|  | mp_int  M[256], res; | 
|  | mp_digit buf, mp; | 
|  | int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | 
|  |  | 
|  | /* use a pointer to the reduction algorithm.  This allows us to use | 
|  | * one of many reduction algorithms without modding the guts of | 
|  | * the code with if statements everywhere. | 
|  | */ | 
|  | int     (*redux)(mp_int*,const mp_int*,mp_digit); | 
|  |  | 
|  | /* find window size */ | 
|  | x = mp_count_bits (X); | 
|  | if (x <= 7) { | 
|  | winsize = 2; | 
|  | } else if (x <= 36) { | 
|  | winsize = 3; | 
|  | } else if (x <= 140) { | 
|  | winsize = 4; | 
|  | } else if (x <= 450) { | 
|  | winsize = 5; | 
|  | } else if (x <= 1303) { | 
|  | winsize = 6; | 
|  | } else if (x <= 3529) { | 
|  | winsize = 7; | 
|  | } else { | 
|  | winsize = 8; | 
|  | } | 
|  |  | 
|  | /* init M array */ | 
|  | /* init first cell */ | 
|  | if ((err = mp_init(&M[1])) != MP_OKAY) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* now init the second half of the array */ | 
|  | for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | 
|  | if ((err = mp_init(&M[x])) != MP_OKAY) { | 
|  | for (y = 1<<(winsize-1); y < x; y++) { | 
|  | mp_clear (&M[y]); | 
|  | } | 
|  | mp_clear(&M[1]); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* determine and setup reduction code */ | 
|  | if (redmode == 0) { | 
|  | /* now setup montgomery  */ | 
|  | if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { | 
|  | goto __M; | 
|  | } | 
|  |  | 
|  | /* automatically pick the comba one if available (saves quite a few calls/ifs) */ | 
|  | if (((P->used * 2 + 1) < MP_WARRAY) && | 
|  | P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | 
|  | redux = fast_mp_montgomery_reduce; | 
|  | } else { | 
|  | /* use slower baseline Montgomery method */ | 
|  | redux = mp_montgomery_reduce; | 
|  | } | 
|  | } else if (redmode == 1) { | 
|  | /* setup DR reduction for moduli of the form B**k - b */ | 
|  | mp_dr_setup(P, &mp); | 
|  | redux = mp_dr_reduce; | 
|  | } else { | 
|  | /* setup DR reduction for moduli of the form 2**k - b */ | 
|  | if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { | 
|  | goto __M; | 
|  | } | 
|  | redux = mp_reduce_2k; | 
|  | } | 
|  |  | 
|  | /* setup result */ | 
|  | if ((err = mp_init (&res)) != MP_OKAY) { | 
|  | goto __M; | 
|  | } | 
|  |  | 
|  | /* create M table | 
|  | * | 
|  |  | 
|  | * | 
|  | * The first half of the table is not computed though accept for M[0] and M[1] | 
|  | */ | 
|  |  | 
|  | if (redmode == 0) { | 
|  | /* now we need R mod m */ | 
|  | if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  |  | 
|  | /* now set M[1] to G * R mod m */ | 
|  | if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } else { | 
|  | mp_set(&res, 1); | 
|  | if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ | 
|  | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  |  | 
|  | for (x = 0; x < (winsize - 1); x++) { | 
|  | if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* create upper table */ | 
|  | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { | 
|  | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = redux (&M[x], P, mp)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* set initial mode and bit cnt */ | 
|  | mode   = 0; | 
|  | bitcnt = 1; | 
|  | buf    = 0; | 
|  | digidx = X->used - 1; | 
|  | bitcpy = 0; | 
|  | bitbuf = 0; | 
|  |  | 
|  | for (;;) { | 
|  | /* grab next digit as required */ | 
|  | if (--bitcnt == 0) { | 
|  | /* if digidx == -1 we are out of digits so break */ | 
|  | if (digidx == -1) { | 
|  | break; | 
|  | } | 
|  | /* read next digit and reset bitcnt */ | 
|  | buf    = X->dp[digidx--]; | 
|  | bitcnt = DIGIT_BIT; | 
|  | } | 
|  |  | 
|  | /* grab the next msb from the exponent */ | 
|  | y     = (buf >> (DIGIT_BIT - 1)) & 1; | 
|  | buf <<= (mp_digit)1; | 
|  |  | 
|  | /* if the bit is zero and mode == 0 then we ignore it | 
|  | * These represent the leading zero bits before the first 1 bit | 
|  | * in the exponent.  Technically this opt is not required but it | 
|  | * does lower the # of trivial squaring/reductions used | 
|  | */ | 
|  | if (mode == 0 && y == 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* if the bit is zero and mode == 1 then we square */ | 
|  | if (mode == 1 && y == 0) { | 
|  | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = redux (&res, P, mp)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* else we add it to the window */ | 
|  | bitbuf |= (y << (winsize - ++bitcpy)); | 
|  | mode    = 2; | 
|  |  | 
|  | if (bitcpy == winsize) { | 
|  | /* ok window is filled so square as required and multiply  */ | 
|  | /* square first */ | 
|  | for (x = 0; x < winsize; x++) { | 
|  | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = redux (&res, P, mp)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* then multiply */ | 
|  | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = redux (&res, P, mp)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  |  | 
|  | /* empty window and reset */ | 
|  | bitcpy = 0; | 
|  | bitbuf = 0; | 
|  | mode   = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if bits remain then square/multiply */ | 
|  | if (mode == 2 && bitcpy > 0) { | 
|  | /* square then multiply if the bit is set */ | 
|  | for (x = 0; x < bitcpy; x++) { | 
|  | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = redux (&res, P, mp)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  |  | 
|  | /* get next bit of the window */ | 
|  | bitbuf <<= 1; | 
|  | if ((bitbuf & (1 << winsize)) != 0) { | 
|  | /* then multiply */ | 
|  | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = redux (&res, P, mp)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (redmode == 0) { | 
|  | /* fixup result if Montgomery reduction is used | 
|  | * recall that any value in a Montgomery system is | 
|  | * actually multiplied by R mod n.  So we have | 
|  | * to reduce one more time to cancel out the factor | 
|  | * of R. | 
|  | */ | 
|  | if ((err = redux(&res, P, mp)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* swap res with Y */ | 
|  | mp_exch (&res, Y); | 
|  | err = MP_OKAY; | 
|  | __RES:mp_clear (&res); | 
|  | __M: | 
|  | mp_clear(&M[1]); | 
|  | for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | 
|  | mp_clear (&M[x]); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Greatest Common Divisor using the binary method */ | 
|  | int mp_gcd (const mp_int * a, const mp_int * b, mp_int * c) | 
|  | { | 
|  | mp_int  u, v; | 
|  | int     k, u_lsb, v_lsb, res; | 
|  |  | 
|  | /* either zero than gcd is the largest */ | 
|  | if (mp_iszero (a) == 1 && mp_iszero (b) == 0) { | 
|  | return mp_abs (b, c); | 
|  | } | 
|  | if (mp_iszero (a) == 0 && mp_iszero (b) == 1) { | 
|  | return mp_abs (a, c); | 
|  | } | 
|  |  | 
|  | /* optimized.  At this point if a == 0 then | 
|  | * b must equal zero too | 
|  | */ | 
|  | if (mp_iszero (a) == 1) { | 
|  | mp_zero(c); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* get copies of a and b we can modify */ | 
|  | if ((res = mp_init_copy (&u, a)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if ((res = mp_init_copy (&v, b)) != MP_OKAY) { | 
|  | goto __U; | 
|  | } | 
|  |  | 
|  | /* must be positive for the remainder of the algorithm */ | 
|  | u.sign = v.sign = MP_ZPOS; | 
|  |  | 
|  | /* B1.  Find the common power of two for u and v */ | 
|  | u_lsb = mp_cnt_lsb(&u); | 
|  | v_lsb = mp_cnt_lsb(&v); | 
|  | k     = MIN(u_lsb, v_lsb); | 
|  |  | 
|  | if (k > 0) { | 
|  | /* divide the power of two out */ | 
|  | if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { | 
|  | goto __V; | 
|  | } | 
|  |  | 
|  | if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { | 
|  | goto __V; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* divide any remaining factors of two out */ | 
|  | if (u_lsb != k) { | 
|  | if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { | 
|  | goto __V; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (v_lsb != k) { | 
|  | if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { | 
|  | goto __V; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (mp_iszero(&v) == 0) { | 
|  | /* make sure v is the largest */ | 
|  | if (mp_cmp_mag(&u, &v) == MP_GT) { | 
|  | /* swap u and v to make sure v is >= u */ | 
|  | mp_exch(&u, &v); | 
|  | } | 
|  |  | 
|  | /* subtract smallest from largest */ | 
|  | if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { | 
|  | goto __V; | 
|  | } | 
|  |  | 
|  | /* Divide out all factors of two */ | 
|  | if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { | 
|  | goto __V; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* multiply by 2**k which we divided out at the beginning */ | 
|  | if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { | 
|  | goto __V; | 
|  | } | 
|  | c->sign = MP_ZPOS; | 
|  | res = MP_OKAY; | 
|  | __V:mp_clear (&u); | 
|  | __U:mp_clear (&v); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* get the lower 32-bits of an mp_int */ | 
|  | unsigned long mp_get_int(const mp_int * a) | 
|  | { | 
|  | int i; | 
|  | unsigned long res; | 
|  |  | 
|  | if (a->used == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* get number of digits of the lsb we have to read */ | 
|  | i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1; | 
|  |  | 
|  | /* get most significant digit of result */ | 
|  | res = DIGIT(a,i); | 
|  |  | 
|  | while (--i >= 0) { | 
|  | res = (res << DIGIT_BIT) | DIGIT(a,i); | 
|  | } | 
|  |  | 
|  | /* force result to 32-bits always so it is consistent on non 32-bit platforms */ | 
|  | return res & 0xFFFFFFFFUL; | 
|  | } | 
|  |  | 
|  | /* creates "a" then copies b into it */ | 
|  | int mp_init_copy (mp_int * a, const mp_int * b) | 
|  | { | 
|  | int     res; | 
|  |  | 
|  | if ((res = mp_init (a)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | return mp_copy (b, a); | 
|  | } | 
|  |  | 
|  | int mp_init_multi(mp_int *mp, ...) | 
|  | { | 
|  | mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */ | 
|  | int n = 0;                 /* Number of ok inits */ | 
|  | mp_int* cur_arg = mp; | 
|  | va_list args; | 
|  |  | 
|  | va_start(args, mp);        /* init args to next argument from caller */ | 
|  | while (cur_arg != NULL) { | 
|  | if (mp_init(cur_arg) != MP_OKAY) { | 
|  | /* Oops - error! Back-track and mp_clear what we already | 
|  | succeeded in init-ing, then return error. | 
|  | */ | 
|  | va_list clean_args; | 
|  |  | 
|  | /* end the current list */ | 
|  | va_end(args); | 
|  |  | 
|  | /* now start cleaning up */ | 
|  | cur_arg = mp; | 
|  | va_start(clean_args, mp); | 
|  | while (n--) { | 
|  | mp_clear(cur_arg); | 
|  | cur_arg = va_arg(clean_args, mp_int*); | 
|  | } | 
|  | va_end(clean_args); | 
|  | res = MP_MEM; | 
|  | break; | 
|  | } | 
|  | n++; | 
|  | cur_arg = va_arg(args, mp_int*); | 
|  | } | 
|  | va_end(args); | 
|  | return res;                /* Assumed ok, if error flagged above. */ | 
|  | } | 
|  |  | 
|  | /* hac 14.61, pp608 */ | 
|  | int mp_invmod (const mp_int * a, mp_int * b, mp_int * c) | 
|  | { | 
|  | /* b cannot be negative */ | 
|  | if (b->sign == MP_NEG || mp_iszero(b) == 1) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* if the modulus is odd we can use a faster routine instead */ | 
|  | if (mp_isodd (b) == 1) { | 
|  | return fast_mp_invmod (a, b, c); | 
|  | } | 
|  |  | 
|  | return mp_invmod_slow(a, b, c); | 
|  | } | 
|  |  | 
|  | /* hac 14.61, pp608 */ | 
|  | int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c) | 
|  | { | 
|  | mp_int  x, y, u, v, A, B, C, D; | 
|  | int     res; | 
|  |  | 
|  | /* b cannot be negative */ | 
|  | if (b->sign == MP_NEG || mp_iszero(b) == 1) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* init temps */ | 
|  | if ((res = mp_init_multi(&x, &y, &u, &v, | 
|  | &A, &B, &C, &D, NULL)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* x = a, y = b */ | 
|  | if ((res = mp_copy (a, &x)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | if ((res = mp_copy (b, &y)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | /* 2. [modified] if x,y are both even then return an error! */ | 
|  | if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { | 
|  | res = MP_VAL; | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | 
|  | if ((res = mp_copy (&x, &u)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | if ((res = mp_copy (&y, &v)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | mp_set (&A, 1); | 
|  | mp_set (&D, 1); | 
|  |  | 
|  | top: | 
|  | /* 4.  while u is even do */ | 
|  | while (mp_iseven (&u) == 1) { | 
|  | /* 4.1 u = u/2 */ | 
|  | if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | /* 4.2 if A or B is odd then */ | 
|  | if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { | 
|  | /* A = (A+y)/2, B = (B-x)/2 */ | 
|  | if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  | /* A = A/2, B = B/2 */ | 
|  | if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 5.  while v is even do */ | 
|  | while (mp_iseven (&v) == 1) { | 
|  | /* 5.1 v = v/2 */ | 
|  | if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | /* 5.2 if C or D is odd then */ | 
|  | if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { | 
|  | /* C = (C+y)/2, D = (D-x)/2 */ | 
|  | if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  | /* C = C/2, D = D/2 */ | 
|  | if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 6.  if u >= v then */ | 
|  | if (mp_cmp (&u, &v) != MP_LT) { | 
|  | /* u = u - v, A = A - C, B = B - D */ | 
|  | if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } else { | 
|  | /* v - v - u, C = C - A, D = D - B */ | 
|  | if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if not zero goto step 4 */ | 
|  | if (mp_iszero (&u) == 0) | 
|  | goto top; | 
|  |  | 
|  | /* now a = C, b = D, gcd == g*v */ | 
|  |  | 
|  | /* if v != 1 then there is no inverse */ | 
|  | if (mp_cmp_d (&v, 1) != MP_EQ) { | 
|  | res = MP_VAL; | 
|  | goto __ERR; | 
|  | } | 
|  |  | 
|  | /* if it's too low */ | 
|  | while (mp_cmp_d(&C, 0) == MP_LT) { | 
|  | if ((res = mp_add(&C, b, &C)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* too big */ | 
|  | while (mp_cmp_mag(&C, b) != MP_LT) { | 
|  | if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { | 
|  | goto __ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* C is now the inverse */ | 
|  | mp_exch (&C, c); | 
|  | res = MP_OKAY; | 
|  | __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* c = |a| * |b| using Karatsuba Multiplication using | 
|  | * three half size multiplications | 
|  | * | 
|  | * Let B represent the radix [e.g. 2**DIGIT_BIT] and | 
|  | * let n represent half of the number of digits in | 
|  | * the min(a,b) | 
|  | * | 
|  | * a = a1 * B**n + a0 | 
|  | * b = b1 * B**n + b0 | 
|  | * | 
|  | * Then, a * b => | 
|  | a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0 | 
|  | * | 
|  | * Note that a1b1 and a0b0 are used twice and only need to be | 
|  | * computed once.  So in total three half size (half # of | 
|  | * digit) multiplications are performed, a0b0, a1b1 and | 
|  | * (a1-b1)(a0-b0) | 
|  | * | 
|  | * Note that a multiplication of half the digits requires | 
|  | * 1/4th the number of single precision multiplications so in | 
|  | * total after one call 25% of the single precision multiplications | 
|  | * are saved.  Note also that the call to mp_mul can end up back | 
|  | * in this function if the a0, a1, b0, or b1 are above the threshold. | 
|  | * This is known as divide-and-conquer and leads to the famous | 
|  | * O(N**lg(3)) or O(N**1.584) work which is asymptotically lower than | 
|  | * the standard O(N**2) that the baseline/comba methods use. | 
|  | * Generally though the overhead of this method doesn't pay off | 
|  | * until a certain size (N ~ 80) is reached. | 
|  | */ | 
|  | int mp_karatsuba_mul (const mp_int * a, const mp_int * b, mp_int * c) | 
|  | { | 
|  | mp_int  x0, x1, y0, y1, t1, x0y0, x1y1; | 
|  | int     B, err; | 
|  |  | 
|  | /* default the return code to an error */ | 
|  | err = MP_MEM; | 
|  |  | 
|  | /* min # of digits */ | 
|  | B = MIN (a->used, b->used); | 
|  |  | 
|  | /* now divide in two */ | 
|  | B = B >> 1; | 
|  |  | 
|  | /* init copy all the temps */ | 
|  | if (mp_init_size (&x0, B) != MP_OKAY) | 
|  | goto ERR; | 
|  | if (mp_init_size (&x1, a->used - B) != MP_OKAY) | 
|  | goto X0; | 
|  | if (mp_init_size (&y0, B) != MP_OKAY) | 
|  | goto X1; | 
|  | if (mp_init_size (&y1, b->used - B) != MP_OKAY) | 
|  | goto Y0; | 
|  |  | 
|  | /* init temps */ | 
|  | if (mp_init_size (&t1, B * 2) != MP_OKAY) | 
|  | goto Y1; | 
|  | if (mp_init_size (&x0y0, B * 2) != MP_OKAY) | 
|  | goto T1; | 
|  | if (mp_init_size (&x1y1, B * 2) != MP_OKAY) | 
|  | goto X0Y0; | 
|  |  | 
|  | /* now shift the digits */ | 
|  | x0.used = y0.used = B; | 
|  | x1.used = a->used - B; | 
|  | y1.used = b->used - B; | 
|  |  | 
|  | { | 
|  | register int x; | 
|  | register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; | 
|  |  | 
|  | /* we copy the digits directly instead of using higher level functions | 
|  | * since we also need to shift the digits | 
|  | */ | 
|  | tmpa = a->dp; | 
|  | tmpb = b->dp; | 
|  |  | 
|  | tmpx = x0.dp; | 
|  | tmpy = y0.dp; | 
|  | for (x = 0; x < B; x++) { | 
|  | *tmpx++ = *tmpa++; | 
|  | *tmpy++ = *tmpb++; | 
|  | } | 
|  |  | 
|  | tmpx = x1.dp; | 
|  | for (x = B; x < a->used; x++) { | 
|  | *tmpx++ = *tmpa++; | 
|  | } | 
|  |  | 
|  | tmpy = y1.dp; | 
|  | for (x = B; x < b->used; x++) { | 
|  | *tmpy++ = *tmpb++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* only need to clamp the lower words since by definition the | 
|  | * upper words x1/y1 must have a known number of digits | 
|  | */ | 
|  | mp_clamp (&x0); | 
|  | mp_clamp (&y0); | 
|  |  | 
|  | /* now calc the products x0y0 and x1y1 */ | 
|  | /* after this x0 is no longer required, free temp [x0==t2]! */ | 
|  | if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) | 
|  | goto X1Y1;          /* x0y0 = x0*y0 */ | 
|  | if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) | 
|  | goto X1Y1;          /* x1y1 = x1*y1 */ | 
|  |  | 
|  | /* now calc x1-x0 and y1-y0 */ | 
|  | if (mp_sub (&x1, &x0, &t1) != MP_OKAY) | 
|  | goto X1Y1;          /* t1 = x1 - x0 */ | 
|  | if (mp_sub (&y1, &y0, &x0) != MP_OKAY) | 
|  | goto X1Y1;          /* t2 = y1 - y0 */ | 
|  | if (mp_mul (&t1, &x0, &t1) != MP_OKAY) | 
|  | goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */ | 
|  |  | 
|  | /* add x0y0 */ | 
|  | if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) | 
|  | goto X1Y1;          /* t2 = x0y0 + x1y1 */ | 
|  | if (mp_sub (&x0, &t1, &t1) != MP_OKAY) | 
|  | goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */ | 
|  |  | 
|  | /* shift by B */ | 
|  | if (mp_lshd (&t1, B) != MP_OKAY) | 
|  | goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ | 
|  | if (mp_lshd (&x1y1, B * 2) != MP_OKAY) | 
|  | goto X1Y1;          /* x1y1 = x1y1 << 2*B */ | 
|  |  | 
|  | if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) | 
|  | goto X1Y1;          /* t1 = x0y0 + t1 */ | 
|  | if (mp_add (&t1, &x1y1, c) != MP_OKAY) | 
|  | goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */ | 
|  |  | 
|  | /* Algorithm succeeded set the return code to MP_OKAY */ | 
|  | err = MP_OKAY; | 
|  |  | 
|  | X1Y1:mp_clear (&x1y1); | 
|  | X0Y0:mp_clear (&x0y0); | 
|  | T1:mp_clear (&t1); | 
|  | Y1:mp_clear (&y1); | 
|  | Y0:mp_clear (&y0); | 
|  | X1:mp_clear (&x1); | 
|  | X0:mp_clear (&x0); | 
|  | ERR: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Karatsuba squaring, computes b = a*a using three | 
|  | * half size squarings | 
|  | * | 
|  | * See comments of karatsuba_mul for details.  It | 
|  | * is essentially the same algorithm but merely | 
|  | * tuned to perform recursive squarings. | 
|  | */ | 
|  | int mp_karatsuba_sqr (const mp_int * a, mp_int * b) | 
|  | { | 
|  | mp_int  x0, x1, t1, t2, x0x0, x1x1; | 
|  | int     B, err; | 
|  |  | 
|  | err = MP_MEM; | 
|  |  | 
|  | /* min # of digits */ | 
|  | B = a->used; | 
|  |  | 
|  | /* now divide in two */ | 
|  | B = B >> 1; | 
|  |  | 
|  | /* init copy all the temps */ | 
|  | if (mp_init_size (&x0, B) != MP_OKAY) | 
|  | goto ERR; | 
|  | if (mp_init_size (&x1, a->used - B) != MP_OKAY) | 
|  | goto X0; | 
|  |  | 
|  | /* init temps */ | 
|  | if (mp_init_size (&t1, a->used * 2) != MP_OKAY) | 
|  | goto X1; | 
|  | if (mp_init_size (&t2, a->used * 2) != MP_OKAY) | 
|  | goto T1; | 
|  | if (mp_init_size (&x0x0, B * 2) != MP_OKAY) | 
|  | goto T2; | 
|  | if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY) | 
|  | goto X0X0; | 
|  |  | 
|  | { | 
|  | register int x; | 
|  | register mp_digit *dst, *src; | 
|  |  | 
|  | src = a->dp; | 
|  |  | 
|  | /* now shift the digits */ | 
|  | dst = x0.dp; | 
|  | for (x = 0; x < B; x++) { | 
|  | *dst++ = *src++; | 
|  | } | 
|  |  | 
|  | dst = x1.dp; | 
|  | for (x = B; x < a->used; x++) { | 
|  | *dst++ = *src++; | 
|  | } | 
|  | } | 
|  |  | 
|  | x0.used = B; | 
|  | x1.used = a->used - B; | 
|  |  | 
|  | mp_clamp (&x0); | 
|  |  | 
|  | /* now calc the products x0*x0 and x1*x1 */ | 
|  | if (mp_sqr (&x0, &x0x0) != MP_OKAY) | 
|  | goto X1X1;           /* x0x0 = x0*x0 */ | 
|  | if (mp_sqr (&x1, &x1x1) != MP_OKAY) | 
|  | goto X1X1;           /* x1x1 = x1*x1 */ | 
|  |  | 
|  | /* now calc (x1-x0)**2 */ | 
|  | if (mp_sub (&x1, &x0, &t1) != MP_OKAY) | 
|  | goto X1X1;           /* t1 = x1 - x0 */ | 
|  | if (mp_sqr (&t1, &t1) != MP_OKAY) | 
|  | goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */ | 
|  |  | 
|  | /* add x0y0 */ | 
|  | if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY) | 
|  | goto X1X1;           /* t2 = x0x0 + x1x1 */ | 
|  | if (mp_sub (&t2, &t1, &t1) != MP_OKAY) | 
|  | goto X1X1;           /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */ | 
|  |  | 
|  | /* shift by B */ | 
|  | if (mp_lshd (&t1, B) != MP_OKAY) | 
|  | goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ | 
|  | if (mp_lshd (&x1x1, B * 2) != MP_OKAY) | 
|  | goto X1X1;           /* x1x1 = x1x1 << 2*B */ | 
|  |  | 
|  | if (mp_add (&x0x0, &t1, &t1) != MP_OKAY) | 
|  | goto X1X1;           /* t1 = x0x0 + t1 */ | 
|  | if (mp_add (&t1, &x1x1, b) != MP_OKAY) | 
|  | goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */ | 
|  |  | 
|  | err = MP_OKAY; | 
|  |  | 
|  | X1X1:mp_clear (&x1x1); | 
|  | X0X0:mp_clear (&x0x0); | 
|  | T2:mp_clear (&t2); | 
|  | T1:mp_clear (&t1); | 
|  | X1:mp_clear (&x1); | 
|  | X0:mp_clear (&x0); | 
|  | ERR: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* computes least common multiple as |a*b|/(a, b) */ | 
|  | int mp_lcm (const mp_int * a, const mp_int * b, mp_int * c) | 
|  | { | 
|  | int     res; | 
|  | mp_int  t1, t2; | 
|  |  | 
|  |  | 
|  | if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* t1 = get the GCD of the two inputs */ | 
|  | if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) { | 
|  | goto __T; | 
|  | } | 
|  |  | 
|  | /* divide the smallest by the GCD */ | 
|  | if (mp_cmp_mag(a, b) == MP_LT) { | 
|  | /* store quotient in t2 so that t2 * b is the LCM */ | 
|  | if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { | 
|  | goto __T; | 
|  | } | 
|  | res = mp_mul(b, &t2, c); | 
|  | } else { | 
|  | /* store quotient in t2 so that t2 * a is the LCM */ | 
|  | if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { | 
|  | goto __T; | 
|  | } | 
|  | res = mp_mul(a, &t2, c); | 
|  | } | 
|  |  | 
|  | /* fix the sign to positive */ | 
|  | c->sign = MP_ZPOS; | 
|  |  | 
|  | __T: | 
|  | mp_clear_multi (&t1, &t2, NULL); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* c = a mod b, 0 <= c < b */ | 
|  | int | 
|  | mp_mod (const mp_int * a, mp_int * b, mp_int * c) | 
|  | { | 
|  | mp_int  t; | 
|  | int     res; | 
|  |  | 
|  | if ((res = mp_init (&t)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if (t.sign != b->sign) { | 
|  | res = mp_add (b, &t, c); | 
|  | } else { | 
|  | res = MP_OKAY; | 
|  | mp_exch (&t, c); | 
|  | } | 
|  |  | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int | 
|  | mp_mod_d (const mp_int * a, mp_digit b, mp_digit * c) | 
|  | { | 
|  | return mp_div_d(a, b, NULL, c); | 
|  | } | 
|  |  | 
|  | /* b = a*2 */ | 
|  | static int mp_mul_2(const mp_int * a, mp_int * b) | 
|  | { | 
|  | int     x, res, oldused; | 
|  |  | 
|  | /* grow to accommodate result */ | 
|  | if (b->alloc < a->used + 1) { | 
|  | if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | oldused = b->used; | 
|  | b->used = a->used; | 
|  |  | 
|  | { | 
|  | register mp_digit r, rr, *tmpa, *tmpb; | 
|  |  | 
|  | /* alias for source */ | 
|  | tmpa = a->dp; | 
|  |  | 
|  | /* alias for dest */ | 
|  | tmpb = b->dp; | 
|  |  | 
|  | /* carry */ | 
|  | r = 0; | 
|  | for (x = 0; x < a->used; x++) { | 
|  |  | 
|  | /* get what will be the *next* carry bit from the | 
|  | * MSB of the current digit | 
|  | */ | 
|  | rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); | 
|  |  | 
|  | /* now shift up this digit, add in the carry [from the previous] */ | 
|  | *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; | 
|  |  | 
|  | /* copy the carry that would be from the source | 
|  | * digit into the next iteration | 
|  | */ | 
|  | r = rr; | 
|  | } | 
|  |  | 
|  | /* new leading digit? */ | 
|  | if (r != 0) { | 
|  | /* add a MSB which is always 1 at this point */ | 
|  | *tmpb = 1; | 
|  | ++(b->used); | 
|  | } | 
|  |  | 
|  | /* now zero any excess digits on the destination | 
|  | * that we didn't write to | 
|  | */ | 
|  | tmpb = b->dp + b->used; | 
|  | for (x = b->used; x < oldused; x++) { | 
|  | *tmpb++ = 0; | 
|  | } | 
|  | } | 
|  | b->sign = a->sign; | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shifts with subtractions when the result is greater than b. | 
|  | * | 
|  | * The method is slightly modified to shift B unconditionally up to just under | 
|  | * the leading bit of b.  This saves a lot of multiple precision shifting. | 
|  | */ | 
|  | int mp_montgomery_calc_normalization (mp_int * a, const mp_int * b) | 
|  | { | 
|  | int     x, bits, res; | 
|  |  | 
|  | /* how many bits of last digit does b use */ | 
|  | bits = mp_count_bits (b) % DIGIT_BIT; | 
|  |  | 
|  |  | 
|  | if (b->used > 1) { | 
|  | if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } else { | 
|  | mp_set(a, 1); | 
|  | bits = 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* now compute C = A * B mod b */ | 
|  | for (x = bits - 1; x < DIGIT_BIT; x++) { | 
|  | if ((res = mp_mul_2 (a, a)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | if (mp_cmp_mag (a, b) != MP_LT) { | 
|  | if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* computes xR**-1 == x (mod N) via Montgomery Reduction */ | 
|  | int | 
|  | mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho) | 
|  | { | 
|  | int     ix, res, digs; | 
|  | mp_digit mu; | 
|  |  | 
|  | /* can the fast reduction [comba] method be used? | 
|  | * | 
|  | * Note that unlike in mul you're safely allowed *less* | 
|  | * than the available columns [255 per default] since carries | 
|  | * are fixed up in the inner loop. | 
|  | */ | 
|  | digs = n->used * 2 + 1; | 
|  | if ((digs < MP_WARRAY) && | 
|  | n->used < | 
|  | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | 
|  | return fast_mp_montgomery_reduce (x, n, rho); | 
|  | } | 
|  |  | 
|  | /* grow the input as required */ | 
|  | if (x->alloc < digs) { | 
|  | if ((res = mp_grow (x, digs)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  | x->used = digs; | 
|  |  | 
|  | for (ix = 0; ix < n->used; ix++) { | 
|  | /* mu = ai * rho mod b | 
|  | * | 
|  | * The value of rho must be precalculated via | 
|  | * montgomery_setup() such that | 
|  | * it equals -1/n0 mod b this allows the | 
|  | * following inner loop to reduce the | 
|  | * input one digit at a time | 
|  | */ | 
|  | mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); | 
|  |  | 
|  | /* a = a + mu * m * b**i */ | 
|  | { | 
|  | register int iy; | 
|  | register mp_digit *tmpn, *tmpx, u; | 
|  | register mp_word r; | 
|  |  | 
|  | /* alias for digits of the modulus */ | 
|  | tmpn = n->dp; | 
|  |  | 
|  | /* alias for the digits of x [the input] */ | 
|  | tmpx = x->dp + ix; | 
|  |  | 
|  | /* set the carry to zero */ | 
|  | u = 0; | 
|  |  | 
|  | /* Multiply and add in place */ | 
|  | for (iy = 0; iy < n->used; iy++) { | 
|  | /* compute product and sum */ | 
|  | r       = ((mp_word)mu) * ((mp_word)*tmpn++) + | 
|  | ((mp_word) u) + ((mp_word) * tmpx); | 
|  |  | 
|  | /* get carry */ | 
|  | u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | 
|  |  | 
|  | /* fix digit */ | 
|  | *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); | 
|  | } | 
|  | /* At this point the ix'th digit of x should be zero */ | 
|  |  | 
|  |  | 
|  | /* propagate carries upwards as required*/ | 
|  | while (u) { | 
|  | *tmpx   += u; | 
|  | u        = *tmpx >> DIGIT_BIT; | 
|  | *tmpx++ &= MP_MASK; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* at this point the n.used'th least | 
|  | * significant digits of x are all zero | 
|  | * which means we can shift x to the | 
|  | * right by n.used digits and the | 
|  | * residue is unchanged. | 
|  | */ | 
|  |  | 
|  | /* x = x/b**n.used */ | 
|  | mp_clamp(x); | 
|  | mp_rshd (x, n->used); | 
|  |  | 
|  | /* if x >= n then x = x - n */ | 
|  | if (mp_cmp_mag (x, n) != MP_LT) { | 
|  | return s_mp_sub (x, n, x); | 
|  | } | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* setups the montgomery reduction stuff */ | 
|  | int | 
|  | mp_montgomery_setup (const mp_int * n, mp_digit * rho) | 
|  | { | 
|  | mp_digit x, b; | 
|  |  | 
|  | /* fast inversion mod 2**k | 
|  | * | 
|  | * Based on the fact that | 
|  | * | 
|  | * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n) | 
|  | *                    =>  2*X*A - X*X*A*A = 1 | 
|  | *                    =>  2*(1) - (1)     = 1 | 
|  | */ | 
|  | b = n->dp[0]; | 
|  |  | 
|  | if ((b & 1) == 0) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ | 
|  | x *= 2 - b * x;               /* here x*a==1 mod 2**8 */ | 
|  | x *= 2 - b * x;               /* here x*a==1 mod 2**16 */ | 
|  | x *= 2 - b * x;               /* here x*a==1 mod 2**32 */ | 
|  |  | 
|  | /* rho = -1/m mod b */ | 
|  | *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* high level multiplication (handles sign) */ | 
|  | int mp_mul (const mp_int * a, const mp_int * b, mp_int * c) | 
|  | { | 
|  | int     res, neg; | 
|  | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; | 
|  |  | 
|  | /* use Karatsuba? */ | 
|  | if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { | 
|  | res = mp_karatsuba_mul (a, b, c); | 
|  | } else | 
|  | { | 
|  | /* can we use the fast multiplier? | 
|  | * | 
|  | * The fast multiplier can be used if the output will | 
|  | * have less than MP_WARRAY digits and the number of | 
|  | * digits won't affect carry propagation | 
|  | */ | 
|  | int     digs = a->used + b->used + 1; | 
|  |  | 
|  | if ((digs < MP_WARRAY) && | 
|  | MIN(a->used, b->used) <= | 
|  | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | 
|  | res = fast_s_mp_mul_digs (a, b, c, digs); | 
|  | } else | 
|  | res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ | 
|  | } | 
|  | c->sign = (c->used > 0) ? neg : MP_ZPOS; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* d = a * b (mod c) */ | 
|  | int | 
|  | mp_mulmod (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d) | 
|  | { | 
|  | int     res; | 
|  | mp_int  t; | 
|  |  | 
|  | if ((res = mp_init (&t)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if ((res = mp_mul (a, b, &t)) != MP_OKAY) { | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  | res = mp_mod (&t, c, d); | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* table of first PRIME_SIZE primes */ | 
|  | static const mp_digit __prime_tab[] = { | 
|  | 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, | 
|  | 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, | 
|  | 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, | 
|  | 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083, | 
|  | 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, | 
|  | 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, | 
|  | 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, | 
|  | 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, | 
|  |  | 
|  | 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, | 
|  | 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, | 
|  | 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, | 
|  | 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, | 
|  | 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, | 
|  | 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, | 
|  | 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, | 
|  | 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, | 
|  |  | 
|  | 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, | 
|  | 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, | 
|  | 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, | 
|  | 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, | 
|  | 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, | 
|  | 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, | 
|  | 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, | 
|  | 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, | 
|  |  | 
|  | 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, | 
|  | 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, | 
|  | 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, | 
|  | 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, | 
|  | 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, | 
|  | 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, | 
|  | 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, | 
|  | 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 | 
|  | }; | 
|  |  | 
|  | /* determines if an integers is divisible by one | 
|  | * of the first PRIME_SIZE primes or not | 
|  | * | 
|  | * sets result to 0 if not, 1 if yes | 
|  | */ | 
|  | static int mp_prime_is_divisible (const mp_int * a, int *result) | 
|  | { | 
|  | int     err, ix; | 
|  | mp_digit res; | 
|  |  | 
|  | /* default to not */ | 
|  | *result = MP_NO; | 
|  |  | 
|  | for (ix = 0; ix < PRIME_SIZE; ix++) { | 
|  | /* what is a mod __prime_tab[ix] */ | 
|  | if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* is the residue zero? */ | 
|  | if (res == 0) { | 
|  | *result = MP_YES; | 
|  | return MP_OKAY; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* Miller-Rabin test of "a" to the base of "b" as described in | 
|  | * HAC pp. 139 Algorithm 4.24 | 
|  | * | 
|  | * Sets result to 0 if definitely composite or 1 if probably prime. | 
|  | * Randomly the chance of error is no more than 1/4 and often | 
|  | * very much lower. | 
|  | */ | 
|  | static int mp_prime_miller_rabin (mp_int * a, const mp_int * b, int *result) | 
|  | { | 
|  | mp_int  n1, y, r; | 
|  | int     s, j, err; | 
|  |  | 
|  | /* default */ | 
|  | *result = MP_NO; | 
|  |  | 
|  | /* ensure b > 1 */ | 
|  | if (mp_cmp_d(b, 1) != MP_GT) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* get n1 = a - 1 */ | 
|  | if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { | 
|  | return err; | 
|  | } | 
|  | if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { | 
|  | goto __N1; | 
|  | } | 
|  |  | 
|  | /* set 2**s * r = n1 */ | 
|  | if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { | 
|  | goto __N1; | 
|  | } | 
|  |  | 
|  | /* count the number of least significant bits | 
|  | * which are zero | 
|  | */ | 
|  | s = mp_cnt_lsb(&r); | 
|  |  | 
|  | /* now divide n - 1 by 2**s */ | 
|  | if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { | 
|  | goto __R; | 
|  | } | 
|  |  | 
|  | /* compute y = b**r mod a */ | 
|  | if ((err = mp_init (&y)) != MP_OKAY) { | 
|  | goto __R; | 
|  | } | 
|  | if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | /* if y != 1 and y != n1 do */ | 
|  | if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { | 
|  | j = 1; | 
|  | /* while j <= s-1 and y != n1 */ | 
|  | while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { | 
|  | if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | /* if y == 1 then composite */ | 
|  | if (mp_cmp_d (&y, 1) == MP_EQ) { | 
|  | goto __Y; | 
|  | } | 
|  |  | 
|  | ++j; | 
|  | } | 
|  |  | 
|  | /* if y != n1 then composite */ | 
|  | if (mp_cmp (&y, &n1) != MP_EQ) { | 
|  | goto __Y; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* probably prime now */ | 
|  | *result = MP_YES; | 
|  | __Y:mp_clear (&y); | 
|  | __R:mp_clear (&r); | 
|  | __N1:mp_clear (&n1); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* performs a variable number of rounds of Miller-Rabin | 
|  | * | 
|  | * Probability of error after t rounds is no more than | 
|  |  | 
|  | * | 
|  | * Sets result to 1 if probably prime, 0 otherwise | 
|  | */ | 
|  | static int mp_prime_is_prime (mp_int * a, int t, int *result) | 
|  | { | 
|  | mp_int  b; | 
|  | int     ix, err, res; | 
|  |  | 
|  | /* default to no */ | 
|  | *result = MP_NO; | 
|  |  | 
|  | /* valid value of t? */ | 
|  | if (t <= 0 || t > PRIME_SIZE) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* is the input equal to one of the primes in the table? */ | 
|  | for (ix = 0; ix < PRIME_SIZE; ix++) { | 
|  | if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) { | 
|  | *result = 1; | 
|  | return MP_OKAY; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* first perform trial division */ | 
|  | if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* return if it was trivially divisible */ | 
|  | if (res == MP_YES) { | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* now perform the miller-rabin rounds */ | 
|  | if ((err = mp_init (&b)) != MP_OKAY) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | for (ix = 0; ix < t; ix++) { | 
|  | /* set the prime */ | 
|  | mp_set (&b, __prime_tab[ix]); | 
|  |  | 
|  | if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { | 
|  | goto __B; | 
|  | } | 
|  |  | 
|  | if (res == MP_NO) { | 
|  | goto __B; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* passed the test */ | 
|  | *result = MP_YES; | 
|  | __B:mp_clear (&b); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static const struct { | 
|  | int k, t; | 
|  | } sizes[] = { | 
|  | {   128,    28 }, | 
|  | {   256,    16 }, | 
|  | {   384,    10 }, | 
|  | {   512,     7 }, | 
|  | {   640,     6 }, | 
|  | {   768,     5 }, | 
|  | {   896,     4 }, | 
|  | {  1024,     4 } | 
|  | }; | 
|  |  | 
|  | /* returns # of RM trials required for a given bit size */ | 
|  | int mp_prime_rabin_miller_trials(int size) | 
|  | { | 
|  | int x; | 
|  |  | 
|  | for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { | 
|  | if (sizes[x].k == size) { | 
|  | return sizes[x].t; | 
|  | } else if (sizes[x].k > size) { | 
|  | return (x == 0) ? sizes[0].t : sizes[x - 1].t; | 
|  | } | 
|  | } | 
|  | return sizes[x-1].t + 1; | 
|  | } | 
|  |  | 
|  | /* makes a truly random prime of a given size (bits), | 
|  | * | 
|  | * Flags are as follows: | 
|  | * | 
|  | *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4 | 
|  | *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) | 
|  | *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero | 
|  | *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one | 
|  | * | 
|  | * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can | 
|  | * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself | 
|  | * so it can be NULL | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* This is possibly the mother of all prime generation functions, muahahahahaha! */ | 
|  | int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat) | 
|  | { | 
|  | unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb; | 
|  | int res, err, bsize, maskOR_msb_offset; | 
|  |  | 
|  | /* sanity check the input */ | 
|  | if (size <= 1 || t <= 0) { | 
|  | return MP_VAL; | 
|  | } | 
|  |  | 
|  | /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */ | 
|  | if (flags & LTM_PRIME_SAFE) { | 
|  | flags |= LTM_PRIME_BBS; | 
|  | } | 
|  |  | 
|  | /* calc the byte size */ | 
|  | bsize = (size>>3)+((size&7)?1:0); | 
|  |  | 
|  | /* we need a buffer of bsize bytes */ | 
|  | tmp = HeapAlloc(GetProcessHeap(), 0, bsize); | 
|  | if (tmp == NULL) { | 
|  | return MP_MEM; | 
|  | } | 
|  |  | 
|  | /* calc the maskAND value for the MSbyte*/ | 
|  | maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7))); | 
|  |  | 
|  | /* calc the maskOR_msb */ | 
|  | maskOR_msb        = 0; | 
|  | maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; | 
|  | if (flags & LTM_PRIME_2MSB_ON) { | 
|  | maskOR_msb     |= 1 << ((size - 2) & 7); | 
|  | } else if (flags & LTM_PRIME_2MSB_OFF) { | 
|  | maskAND        &= ~(1 << ((size - 2) & 7)); | 
|  | } | 
|  |  | 
|  | /* get the maskOR_lsb */ | 
|  | maskOR_lsb         = 0; | 
|  | if (flags & LTM_PRIME_BBS) { | 
|  | maskOR_lsb     |= 3; | 
|  | } | 
|  |  | 
|  | do { | 
|  | /* read the bytes */ | 
|  | if (cb(tmp, bsize, dat) != bsize) { | 
|  | err = MP_VAL; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* work over the MSbyte */ | 
|  | tmp[0]    &= maskAND; | 
|  | tmp[0]    |= 1 << ((size - 1) & 7); | 
|  |  | 
|  | /* mix in the maskORs */ | 
|  | tmp[maskOR_msb_offset]   |= maskOR_msb; | 
|  | tmp[bsize-1]             |= maskOR_lsb; | 
|  |  | 
|  | /* read it in */ | 
|  | if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY)     { goto error; } | 
|  |  | 
|  | /* is it prime? */ | 
|  | if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           { goto error; } | 
|  | if (res == MP_NO) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (flags & LTM_PRIME_SAFE) { | 
|  | /* see if (a-1)/2 is prime */ | 
|  | if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    { goto error; } | 
|  | if ((err = mp_div_2(a, a)) != MP_OKAY)                       { goto error; } | 
|  |  | 
|  | /* is it prime? */ | 
|  | if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        { goto error; } | 
|  | } | 
|  | } while (res == MP_NO); | 
|  |  | 
|  | if (flags & LTM_PRIME_SAFE) { | 
|  | /* restore a to the original value */ | 
|  | if ((err = mp_mul_2(a, a)) != MP_OKAY)                          { goto error; } | 
|  | if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       { goto error; } | 
|  | } | 
|  |  | 
|  | err = MP_OKAY; | 
|  | error: | 
|  | HeapFree(GetProcessHeap(), 0, tmp); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* reads an unsigned char array, assumes the msb is stored first [big endian] */ | 
|  | int | 
|  | mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) | 
|  | { | 
|  | int     res; | 
|  |  | 
|  | /* make sure there are at least two digits */ | 
|  | if (a->alloc < 2) { | 
|  | if ((res = mp_grow(a, 2)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* zero the int */ | 
|  | mp_zero (a); | 
|  |  | 
|  | /* read the bytes in */ | 
|  | while (c-- > 0) { | 
|  | if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | a->dp[0] |= *b++; | 
|  | a->used += 1; | 
|  | } | 
|  | mp_clamp (a); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* reduces x mod m, assumes 0 < x < m**2, mu is | 
|  | * precomputed via mp_reduce_setup. | 
|  | * From HAC pp.604 Algorithm 14.42 | 
|  | */ | 
|  | int | 
|  | mp_reduce (mp_int * x, const mp_int * m, const mp_int * mu) | 
|  | { | 
|  | mp_int  q; | 
|  | int     res, um = m->used; | 
|  |  | 
|  | /* q = x */ | 
|  | if ((res = mp_init_copy (&q, x)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* q1 = x / b**(k-1)  */ | 
|  | mp_rshd (&q, um - 1); | 
|  |  | 
|  | /* according to HAC this optimization is ok */ | 
|  | if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { | 
|  | if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { | 
|  | goto CLEANUP; | 
|  | } | 
|  | } else { | 
|  | if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) { | 
|  | goto CLEANUP; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* q3 = q2 / b**(k+1) */ | 
|  | mp_rshd (&q, um + 1); | 
|  |  | 
|  | /* x = x mod b**(k+1), quick (no division) */ | 
|  | if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { | 
|  | goto CLEANUP; | 
|  | } | 
|  |  | 
|  | /* q = q * m mod b**(k+1), quick (no division) */ | 
|  | if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { | 
|  | goto CLEANUP; | 
|  | } | 
|  |  | 
|  | /* x = x - q */ | 
|  | if ((res = mp_sub (x, &q, x)) != MP_OKAY) { | 
|  | goto CLEANUP; | 
|  | } | 
|  |  | 
|  | /* If x < 0, add b**(k+1) to it */ | 
|  | if (mp_cmp_d (x, 0) == MP_LT) { | 
|  | mp_set (&q, 1); | 
|  | if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) | 
|  | goto CLEANUP; | 
|  | if ((res = mp_add (x, &q, x)) != MP_OKAY) | 
|  | goto CLEANUP; | 
|  | } | 
|  |  | 
|  | /* Back off if it's too big */ | 
|  | while (mp_cmp (x, m) != MP_LT) { | 
|  | if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { | 
|  | goto CLEANUP; | 
|  | } | 
|  | } | 
|  |  | 
|  | CLEANUP: | 
|  | mp_clear (&q); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* reduces a modulo n where n is of the form 2**p - d */ | 
|  | int | 
|  | mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d) | 
|  | { | 
|  | mp_int q; | 
|  | int    p, res; | 
|  |  | 
|  | if ((res = mp_init(&q)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | p = mp_count_bits(n); | 
|  | top: | 
|  | /* q = a/2**p, a = a mod 2**p */ | 
|  | if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { | 
|  | goto ERR; | 
|  | } | 
|  |  | 
|  | if (d != 1) { | 
|  | /* q = q * d */ | 
|  | if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { | 
|  | goto ERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* a = a + q */ | 
|  | if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { | 
|  | goto ERR; | 
|  | } | 
|  |  | 
|  | if (mp_cmp_mag(a, n) != MP_LT) { | 
|  | s_mp_sub(a, n, a); | 
|  | goto top; | 
|  | } | 
|  |  | 
|  | ERR: | 
|  | mp_clear(&q); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* determines the setup value */ | 
|  | static int | 
|  | mp_reduce_2k_setup(const mp_int *a, mp_digit *d) | 
|  | { | 
|  | int res, p; | 
|  | mp_int tmp; | 
|  |  | 
|  | if ((res = mp_init(&tmp)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | p = mp_count_bits(a); | 
|  | if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { | 
|  | mp_clear(&tmp); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { | 
|  | mp_clear(&tmp); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | *d = tmp.dp[0]; | 
|  | mp_clear(&tmp); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* pre-calculate the value required for Barrett reduction | 
|  | * For a given modulus "b" it calculates the value required in "a" | 
|  | */ | 
|  | int mp_reduce_setup (mp_int * a, const mp_int * b) | 
|  | { | 
|  | int     res; | 
|  |  | 
|  | if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | return mp_div (a, b, a, NULL); | 
|  | } | 
|  |  | 
|  | /* set to a digit */ | 
|  | void mp_set (mp_int * a, mp_digit b) | 
|  | { | 
|  | mp_zero (a); | 
|  | a->dp[0] = b & MP_MASK; | 
|  | a->used  = (a->dp[0] != 0) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | /* set a 32-bit const */ | 
|  | int mp_set_int (mp_int * a, unsigned long b) | 
|  | { | 
|  | int     x, res; | 
|  |  | 
|  | mp_zero (a); | 
|  |  | 
|  | /* set four bits at a time */ | 
|  | for (x = 0; x < 8; x++) { | 
|  | /* shift the number up four bits */ | 
|  | if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* OR in the top four bits of the source */ | 
|  | a->dp[0] |= (b >> 28) & 15; | 
|  |  | 
|  | /* shift the source up to the next four bits */ | 
|  | b <<= 4; | 
|  |  | 
|  | /* ensure that digits are not clamped off */ | 
|  | a->used += 1; | 
|  | } | 
|  | mp_clamp (a); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* shrink a bignum */ | 
|  | int mp_shrink (mp_int * a) | 
|  | { | 
|  | mp_digit *tmp; | 
|  | if (a->alloc != a->used && a->used > 0) { | 
|  | if ((tmp = HeapReAlloc(GetProcessHeap(), 0, a->dp, sizeof (mp_digit) * a->used)) == NULL) { | 
|  | return MP_MEM; | 
|  | } | 
|  | a->dp    = tmp; | 
|  | a->alloc = a->used; | 
|  | } | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* computes b = a*a */ | 
|  | int | 
|  | mp_sqr (const mp_int * a, mp_int * b) | 
|  | { | 
|  | int     res; | 
|  |  | 
|  | if (a->used >= KARATSUBA_SQR_CUTOFF) { | 
|  | res = mp_karatsuba_sqr (a, b); | 
|  | } else | 
|  | { | 
|  | /* can we use the fast comba multiplier? */ | 
|  | if ((a->used * 2 + 1) < MP_WARRAY && | 
|  | a->used < | 
|  | (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { | 
|  | res = fast_s_mp_sqr (a, b); | 
|  | } else | 
|  | res = s_mp_sqr (a, b); | 
|  | } | 
|  | b->sign = MP_ZPOS; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* c = a * a (mod b) */ | 
|  | int | 
|  | mp_sqrmod (const mp_int * a, mp_int * b, mp_int * c) | 
|  | { | 
|  | int     res; | 
|  | mp_int  t; | 
|  |  | 
|  | if ((res = mp_init (&t)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if ((res = mp_sqr (a, &t)) != MP_OKAY) { | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  | res = mp_mod (&t, b, c); | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* high level subtraction (handles signs) */ | 
|  | int | 
|  | mp_sub (mp_int * a, mp_int * b, mp_int * c) | 
|  | { | 
|  | int     sa, sb, res; | 
|  |  | 
|  | sa = a->sign; | 
|  | sb = b->sign; | 
|  |  | 
|  | if (sa != sb) { | 
|  | /* subtract a negative from a positive, OR */ | 
|  | /* subtract a positive from a negative. */ | 
|  | /* In either case, ADD their magnitudes, */ | 
|  | /* and use the sign of the first number. */ | 
|  | c->sign = sa; | 
|  | res = s_mp_add (a, b, c); | 
|  | } else { | 
|  | /* subtract a positive from a positive, OR */ | 
|  | /* subtract a negative from a negative. */ | 
|  | /* First, take the difference between their */ | 
|  | /* magnitudes, then... */ | 
|  | if (mp_cmp_mag (a, b) != MP_LT) { | 
|  | /* Copy the sign from the first */ | 
|  | c->sign = sa; | 
|  | /* The first has a larger or equal magnitude */ | 
|  | res = s_mp_sub (a, b, c); | 
|  | } else { | 
|  | /* The result has the *opposite* sign from */ | 
|  | /* the first number. */ | 
|  | c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; | 
|  | /* The second has a larger magnitude */ | 
|  | res = s_mp_sub (b, a, c); | 
|  | } | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* single digit subtraction */ | 
|  | int | 
|  | mp_sub_d (mp_int * a, mp_digit b, mp_int * c) | 
|  | { | 
|  | mp_digit *tmpa, *tmpc, mu; | 
|  | int       res, ix, oldused; | 
|  |  | 
|  | /* grow c as required */ | 
|  | if (c->alloc < a->used + 1) { | 
|  | if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if a is negative just do an unsigned | 
|  | * addition [with fudged signs] | 
|  | */ | 
|  | if (a->sign == MP_NEG) { | 
|  | a->sign = MP_ZPOS; | 
|  | res     = mp_add_d(a, b, c); | 
|  | a->sign = c->sign = MP_NEG; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* setup regs */ | 
|  | oldused = c->used; | 
|  | tmpa    = a->dp; | 
|  | tmpc    = c->dp; | 
|  |  | 
|  | /* if a <= b simply fix the single digit */ | 
|  | if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) { | 
|  | if (a->used == 1) { | 
|  | *tmpc++ = b - *tmpa; | 
|  | } else { | 
|  | *tmpc++ = b; | 
|  | } | 
|  | ix      = 1; | 
|  |  | 
|  | /* negative/1digit */ | 
|  | c->sign = MP_NEG; | 
|  | c->used = 1; | 
|  | } else { | 
|  | /* positive/size */ | 
|  | c->sign = MP_ZPOS; | 
|  | c->used = a->used; | 
|  |  | 
|  | /* subtract first digit */ | 
|  | *tmpc    = *tmpa++ - b; | 
|  | mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); | 
|  | *tmpc++ &= MP_MASK; | 
|  |  | 
|  | /* handle rest of the digits */ | 
|  | for (ix = 1; ix < a->used; ix++) { | 
|  | *tmpc    = *tmpa++ - mu; | 
|  | mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); | 
|  | *tmpc++ &= MP_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* zero excess digits */ | 
|  | while (ix++ < oldused) { | 
|  | *tmpc++ = 0; | 
|  | } | 
|  | mp_clamp(c); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* store in unsigned [big endian] format */ | 
|  | int | 
|  | mp_to_unsigned_bin (const mp_int * a, unsigned char *b) | 
|  | { | 
|  | int     x, res; | 
|  | mp_int  t; | 
|  |  | 
|  | if ((res = mp_init_copy (&t, a)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | x = 0; | 
|  | while (mp_iszero (&t) == 0) { | 
|  | b[x++] = (unsigned char) (t.dp[0] & 255); | 
|  | if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { | 
|  | mp_clear (&t); | 
|  | return res; | 
|  | } | 
|  | } | 
|  | bn_reverse (b, x); | 
|  | mp_clear (&t); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* get the size for an unsigned equivalent */ | 
|  | int | 
|  | mp_unsigned_bin_size (const mp_int * a) | 
|  | { | 
|  | int     size = mp_count_bits (a); | 
|  | return (size / 8 + ((size & 7) != 0 ? 1 : 0)); | 
|  | } | 
|  |  | 
|  | /* reverse an array, used for radix code */ | 
|  | static void | 
|  | bn_reverse (unsigned char *s, int len) | 
|  | { | 
|  | int     ix, iy; | 
|  | unsigned char t; | 
|  |  | 
|  | ix = 0; | 
|  | iy = len - 1; | 
|  | while (ix < iy) { | 
|  | t     = s[ix]; | 
|  | s[ix] = s[iy]; | 
|  | s[iy] = t; | 
|  | ++ix; | 
|  | --iy; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* low level addition, based on HAC pp.594, Algorithm 14.7 */ | 
|  | static int | 
|  | s_mp_add (mp_int * a, mp_int * b, mp_int * c) | 
|  | { | 
|  | mp_int *x; | 
|  | int     olduse, res, min, max; | 
|  |  | 
|  | /* find sizes, we let |a| <= |b| which means we have to sort | 
|  | * them.  "x" will point to the input with the most digits | 
|  | */ | 
|  | if (a->used > b->used) { | 
|  | min = b->used; | 
|  | max = a->used; | 
|  | x = a; | 
|  | } else { | 
|  | min = a->used; | 
|  | max = b->used; | 
|  | x = b; | 
|  | } | 
|  |  | 
|  | /* init result */ | 
|  | if (c->alloc < max + 1) { | 
|  | if ((res = mp_grow (c, max + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* get old used digit count and set new one */ | 
|  | olduse = c->used; | 
|  | c->used = max + 1; | 
|  |  | 
|  | { | 
|  | register mp_digit u, *tmpa, *tmpb, *tmpc; | 
|  | register int i; | 
|  |  | 
|  | /* alias for digit pointers */ | 
|  |  | 
|  | /* first input */ | 
|  | tmpa = a->dp; | 
|  |  | 
|  | /* second input */ | 
|  | tmpb = b->dp; | 
|  |  | 
|  | /* destination */ | 
|  | tmpc = c->dp; | 
|  |  | 
|  | /* zero the carry */ | 
|  | u = 0; | 
|  | for (i = 0; i < min; i++) { | 
|  | /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ | 
|  | *tmpc = *tmpa++ + *tmpb++ + u; | 
|  |  | 
|  | /* U = carry bit of T[i] */ | 
|  | u = *tmpc >> ((mp_digit)DIGIT_BIT); | 
|  |  | 
|  | /* take away carry bit from T[i] */ | 
|  | *tmpc++ &= MP_MASK; | 
|  | } | 
|  |  | 
|  | /* now copy higher words if any, that is in A+B | 
|  | * if A or B has more digits add those in | 
|  | */ | 
|  | if (min != max) { | 
|  | for (; i < max; i++) { | 
|  | /* T[i] = X[i] + U */ | 
|  | *tmpc = x->dp[i] + u; | 
|  |  | 
|  | /* U = carry bit of T[i] */ | 
|  | u = *tmpc >> ((mp_digit)DIGIT_BIT); | 
|  |  | 
|  | /* take away carry bit from T[i] */ | 
|  | *tmpc++ &= MP_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* add carry */ | 
|  | *tmpc++ = u; | 
|  |  | 
|  | /* clear digits above oldused */ | 
|  | for (i = c->used; i < olduse; i++) { | 
|  | *tmpc++ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | mp_clamp (c); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y) | 
|  | { | 
|  | mp_int  M[256], res, mu; | 
|  | mp_digit buf; | 
|  | int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | 
|  |  | 
|  | /* find window size */ | 
|  | x = mp_count_bits (X); | 
|  | if (x <= 7) { | 
|  | winsize = 2; | 
|  | } else if (x <= 36) { | 
|  | winsize = 3; | 
|  | } else if (x <= 140) { | 
|  | winsize = 4; | 
|  | } else if (x <= 450) { | 
|  | winsize = 5; | 
|  | } else if (x <= 1303) { | 
|  | winsize = 6; | 
|  | } else if (x <= 3529) { | 
|  | winsize = 7; | 
|  | } else { | 
|  | winsize = 8; | 
|  | } | 
|  |  | 
|  | /* init M array */ | 
|  | /* init first cell */ | 
|  | if ((err = mp_init(&M[1])) != MP_OKAY) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* now init the second half of the array */ | 
|  | for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | 
|  | if ((err = mp_init(&M[x])) != MP_OKAY) { | 
|  | for (y = 1<<(winsize-1); y < x; y++) { | 
|  | mp_clear (&M[y]); | 
|  | } | 
|  | mp_clear(&M[1]); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* create mu, used for Barrett reduction */ | 
|  | if ((err = mp_init (&mu)) != MP_OKAY) { | 
|  | goto __M; | 
|  | } | 
|  | if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { | 
|  | goto __MU; | 
|  | } | 
|  |  | 
|  | /* create M table | 
|  | * | 
|  | * The M table contains powers of the base, | 
|  | * e.g. M[x] = G**x mod P | 
|  | * | 
|  | * The first half of the table is not | 
|  | * computed though accept for M[0] and M[1] | 
|  | */ | 
|  | if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { | 
|  | goto __MU; | 
|  | } | 
|  |  | 
|  | /* compute the value at M[1<<(winsize-1)] by squaring | 
|  | * M[1] (winsize-1) times | 
|  | */ | 
|  | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { | 
|  | goto __MU; | 
|  | } | 
|  |  | 
|  | for (x = 0; x < (winsize - 1); x++) { | 
|  | if ((err = mp_sqr (&M[1 << (winsize - 1)], | 
|  | &M[1 << (winsize - 1)])) != MP_OKAY) { | 
|  | goto __MU; | 
|  | } | 
|  | if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { | 
|  | goto __MU; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) | 
|  | * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) | 
|  | */ | 
|  | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { | 
|  | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | 
|  | goto __MU; | 
|  | } | 
|  | if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { | 
|  | goto __MU; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* setup result */ | 
|  | if ((err = mp_init (&res)) != MP_OKAY) { | 
|  | goto __MU; | 
|  | } | 
|  | mp_set (&res, 1); | 
|  |  | 
|  | /* set initial mode and bit cnt */ | 
|  | mode   = 0; | 
|  | bitcnt = 1; | 
|  | buf    = 0; | 
|  | digidx = X->used - 1; | 
|  | bitcpy = 0; | 
|  | bitbuf = 0; | 
|  |  | 
|  | for (;;) { | 
|  | /* grab next digit as required */ | 
|  | if (--bitcnt == 0) { | 
|  | /* if digidx == -1 we are out of digits */ | 
|  | if (digidx == -1) { | 
|  | break; | 
|  | } | 
|  | /* read next digit and reset the bitcnt */ | 
|  | buf    = X->dp[digidx--]; | 
|  | bitcnt = DIGIT_BIT; | 
|  | } | 
|  |  | 
|  | /* grab the next msb from the exponent */ | 
|  | y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; | 
|  | buf <<= (mp_digit)1; | 
|  |  | 
|  | /* if the bit is zero and mode == 0 then we ignore it | 
|  | * These represent the leading zero bits before the first 1 bit | 
|  | * in the exponent.  Technically this opt is not required but it | 
|  | * does lower the # of trivial squaring/reductions used | 
|  | */ | 
|  | if (mode == 0 && y == 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* if the bit is zero and mode == 1 then we square */ | 
|  | if (mode == 1 && y == 0) { | 
|  | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* else we add it to the window */ | 
|  | bitbuf |= (y << (winsize - ++bitcpy)); | 
|  | mode    = 2; | 
|  |  | 
|  | if (bitcpy == winsize) { | 
|  | /* ok window is filled so square as required and multiply  */ | 
|  | /* square first */ | 
|  | for (x = 0; x < winsize; x++) { | 
|  | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* then multiply */ | 
|  | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  |  | 
|  | /* empty window and reset */ | 
|  | bitcpy = 0; | 
|  | bitbuf = 0; | 
|  | mode   = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if bits remain then square/multiply */ | 
|  | if (mode == 2 && bitcpy > 0) { | 
|  | /* square then multiply if the bit is set */ | 
|  | for (x = 0; x < bitcpy; x++) { | 
|  | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  |  | 
|  | bitbuf <<= 1; | 
|  | if ((bitbuf & (1 << winsize)) != 0) { | 
|  | /* then multiply */ | 
|  | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | 
|  | goto __RES; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mp_exch (&res, Y); | 
|  | err = MP_OKAY; | 
|  | __RES:mp_clear (&res); | 
|  | __MU:mp_clear (&mu); | 
|  | __M: | 
|  | mp_clear(&M[1]); | 
|  | for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | 
|  | mp_clear (&M[x]); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* multiplies |a| * |b| and only computes up to digs digits of result | 
|  | * HAC pp. 595, Algorithm 14.12  Modified so you can control how | 
|  | * many digits of output are created. | 
|  | */ | 
|  | static int | 
|  | s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs) | 
|  | { | 
|  | mp_int  t; | 
|  | int     res, pa, pb, ix, iy; | 
|  | mp_digit u; | 
|  | mp_word r; | 
|  | mp_digit tmpx, *tmpt, *tmpy; | 
|  |  | 
|  | /* can we use the fast multiplier? */ | 
|  | if (((digs) < MP_WARRAY) && | 
|  | MIN (a->used, b->used) < | 
|  | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | 
|  | return fast_s_mp_mul_digs (a, b, c, digs); | 
|  | } | 
|  |  | 
|  | if ((res = mp_init_size (&t, digs)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | t.used = digs; | 
|  |  | 
|  | /* compute the digits of the product directly */ | 
|  | pa = a->used; | 
|  | for (ix = 0; ix < pa; ix++) { | 
|  | /* set the carry to zero */ | 
|  | u = 0; | 
|  |  | 
|  | /* limit ourselves to making digs digits of output */ | 
|  | pb = MIN (b->used, digs - ix); | 
|  |  | 
|  | /* setup some aliases */ | 
|  | /* copy of the digit from a used within the nested loop */ | 
|  | tmpx = a->dp[ix]; | 
|  |  | 
|  | /* an alias for the destination shifted ix places */ | 
|  | tmpt = t.dp + ix; | 
|  |  | 
|  | /* an alias for the digits of b */ | 
|  | tmpy = b->dp; | 
|  |  | 
|  | /* compute the columns of the output and propagate the carry */ | 
|  | for (iy = 0; iy < pb; iy++) { | 
|  | /* compute the column as a mp_word */ | 
|  | r       = ((mp_word)*tmpt) + | 
|  | ((mp_word)tmpx) * ((mp_word)*tmpy++) + | 
|  | ((mp_word) u); | 
|  |  | 
|  | /* the new column is the lower part of the result */ | 
|  | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | 
|  |  | 
|  | /* get the carry word from the result */ | 
|  | u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); | 
|  | } | 
|  | /* set carry if it is placed below digs */ | 
|  | if (ix + iy < digs) { | 
|  | *tmpt = u; | 
|  | } | 
|  | } | 
|  |  | 
|  | mp_clamp (&t); | 
|  | mp_exch (&t, c); | 
|  |  | 
|  | mp_clear (&t); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* multiplies |a| * |b| and does not compute the lower digs digits | 
|  | * [meant to get the higher part of the product] | 
|  | */ | 
|  | static int | 
|  | s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs) | 
|  | { | 
|  | mp_int  t; | 
|  | int     res, pa, pb, ix, iy; | 
|  | mp_digit u; | 
|  | mp_word r; | 
|  | mp_digit tmpx, *tmpt, *tmpy; | 
|  |  | 
|  | /* can we use the fast multiplier? */ | 
|  | if (((a->used + b->used + 1) < MP_WARRAY) | 
|  | && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | 
|  | return fast_s_mp_mul_high_digs (a, b, c, digs); | 
|  | } | 
|  |  | 
|  | if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | t.used = a->used + b->used + 1; | 
|  |  | 
|  | pa = a->used; | 
|  | pb = b->used; | 
|  | for (ix = 0; ix < pa; ix++) { | 
|  | /* clear the carry */ | 
|  | u = 0; | 
|  |  | 
|  | /* left hand side of A[ix] * B[iy] */ | 
|  | tmpx = a->dp[ix]; | 
|  |  | 
|  | /* alias to the address of where the digits will be stored */ | 
|  | tmpt = &(t.dp[digs]); | 
|  |  | 
|  | /* alias for where to read the right hand side from */ | 
|  | tmpy = b->dp + (digs - ix); | 
|  |  | 
|  | for (iy = digs - ix; iy < pb; iy++) { | 
|  | /* calculate the double precision result */ | 
|  | r       = ((mp_word)*tmpt) + | 
|  | ((mp_word)tmpx) * ((mp_word)*tmpy++) + | 
|  | ((mp_word) u); | 
|  |  | 
|  | /* get the lower part */ | 
|  | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | 
|  |  | 
|  | /* carry the carry */ | 
|  | u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); | 
|  | } | 
|  | *tmpt = u; | 
|  | } | 
|  | mp_clamp (&t); | 
|  | mp_exch (&t, c); | 
|  | mp_clear (&t); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ | 
|  | static int | 
|  | s_mp_sqr (const mp_int * a, mp_int * b) | 
|  | { | 
|  | mp_int  t; | 
|  | int     res, ix, iy, pa; | 
|  | mp_word r; | 
|  | mp_digit u, tmpx, *tmpt; | 
|  |  | 
|  | pa = a->used; | 
|  | if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* default used is maximum possible size */ | 
|  | t.used = 2*pa + 1; | 
|  |  | 
|  | for (ix = 0; ix < pa; ix++) { | 
|  | /* first calculate the digit at 2*ix */ | 
|  | /* calculate double precision result */ | 
|  | r = ((mp_word) t.dp[2*ix]) + | 
|  | ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); | 
|  |  | 
|  | /* store lower part in result */ | 
|  | t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); | 
|  |  | 
|  | /* get the carry */ | 
|  | u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | 
|  |  | 
|  | /* left hand side of A[ix] * A[iy] */ | 
|  | tmpx        = a->dp[ix]; | 
|  |  | 
|  | /* alias for where to store the results */ | 
|  | tmpt        = t.dp + (2*ix + 1); | 
|  |  | 
|  | for (iy = ix + 1; iy < pa; iy++) { | 
|  | /* first calculate the product */ | 
|  | r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); | 
|  |  | 
|  | /* now calculate the double precision result, note we use | 
|  | * addition instead of *2 since it's easier to optimize | 
|  | */ | 
|  | r       = ((mp_word) *tmpt) + r + r + ((mp_word) u); | 
|  |  | 
|  | /* store lower part */ | 
|  | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | 
|  |  | 
|  | /* get carry */ | 
|  | u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | 
|  | } | 
|  | /* propagate upwards */ | 
|  | while (u != 0) { | 
|  | r       = ((mp_word) *tmpt) + ((mp_word) u); | 
|  | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | 
|  | u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | mp_clamp (&t); | 
|  | mp_exch (&t, b); | 
|  | mp_clear (&t); | 
|  | return MP_OKAY; | 
|  | } | 
|  |  | 
|  | /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ | 
|  | int | 
|  | s_mp_sub (const mp_int * a, const mp_int * b, mp_int * c) | 
|  | { | 
|  | int     olduse, res, min, max; | 
|  |  | 
|  | /* find sizes */ | 
|  | min = b->used; | 
|  | max = a->used; | 
|  |  | 
|  | /* init result */ | 
|  | if (c->alloc < max) { | 
|  | if ((res = mp_grow (c, max)) != MP_OKAY) { | 
|  | return res; | 
|  | } | 
|  | } | 
|  | olduse = c->used; | 
|  | c->used = max; | 
|  |  | 
|  | { | 
|  | register mp_digit u, *tmpa, *tmpb, *tmpc; | 
|  | register int i; | 
|  |  | 
|  | /* alias for digit pointers */ | 
|  | tmpa = a->dp; | 
|  | tmpb = b->dp; | 
|  | tmpc = c->dp; | 
|  |  | 
|  | /* set carry to zero */ | 
|  | u = 0; | 
|  | for (i = 0; i < min; i++) { | 
|  | /* T[i] = A[i] - B[i] - U */ | 
|  | *tmpc = *tmpa++ - *tmpb++ - u; | 
|  |  | 
|  | /* U = carry bit of T[i] | 
|  | * Note this saves performing an AND operation since | 
|  | * if a carry does occur it will propagate all the way to the | 
|  | * MSB.  As a result a single shift is enough to get the carry | 
|  | */ | 
|  | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); | 
|  |  | 
|  | /* Clear carry from T[i] */ | 
|  | *tmpc++ &= MP_MASK; | 
|  | } | 
|  |  | 
|  | /* now copy higher words if any, e.g. if A has more digits than B  */ | 
|  | for (; i < max; i++) { | 
|  | /* T[i] = A[i] - U */ | 
|  | *tmpc = *tmpa++ - u; | 
|  |  | 
|  | /* U = carry bit of T[i] */ | 
|  | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); | 
|  |  | 
|  | /* Clear carry from T[i] */ | 
|  | *tmpc++ &= MP_MASK; | 
|  | } | 
|  |  | 
|  | /* clear digits above used (since we may not have grown result above) */ | 
|  | for (i = c->used; i < olduse; i++) { | 
|  | *tmpc++ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | mp_clamp (c); | 
|  | return MP_OKAY; | 
|  | } |