| /* |
| * dlls/rsaenh/mpi.c |
| * Multi Precision Integer functions |
| * |
| * Copyright 2004 Michael Jung |
| * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca) |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA |
| */ |
| |
| /* |
| * This file contains code from the LibTomCrypt cryptographic |
| * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt |
| * is in the public domain. The code in this file is tailored to |
| * special requirements. Take a look at http://libtomcrypt.org for the |
| * original version. |
| */ |
| |
| #include <stdarg.h> |
| #include "tomcrypt.h" |
| |
| /* computes the modular inverse via binary extended euclidean algorithm, |
| * that is c = 1/a mod b |
| * |
| * Based on slow invmod except this is optimized for the case where b is |
| * odd as per HAC Note 14.64 on pp. 610 |
| */ |
| int |
| fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int x, y, u, v, B, D; |
| int res, neg; |
| |
| /* 2. [modified] b must be odd */ |
| if (mp_iseven (b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* init all our temps */ |
| if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* x == modulus, y == value to invert */ |
| if ((res = mp_copy (b, &x)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| /* we need y = |a| */ |
| if ((res = mp_abs (a, &y)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
| if ((res = mp_copy (&x, &u)) != MP_OKAY) { |
| goto __ERR; |
| } |
| if ((res = mp_copy (&y, &v)) != MP_OKAY) { |
| goto __ERR; |
| } |
| mp_set (&D, 1); |
| |
| top: |
| /* 4. while u is even do */ |
| while (mp_iseven (&u) == 1) { |
| /* 4.1 u = u/2 */ |
| if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { |
| goto __ERR; |
| } |
| /* 4.2 if B is odd then */ |
| if (mp_isodd (&B) == 1) { |
| if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| /* B = B/2 */ |
| if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| |
| /* 5. while v is even do */ |
| while (mp_iseven (&v) == 1) { |
| /* 5.1 v = v/2 */ |
| if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { |
| goto __ERR; |
| } |
| /* 5.2 if D is odd then */ |
| if (mp_isodd (&D) == 1) { |
| /* D = (D-x)/2 */ |
| if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| /* D = D/2 */ |
| if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| |
| /* 6. if u >= v then */ |
| if (mp_cmp (&u, &v) != MP_LT) { |
| /* u = u - v, B = B - D */ |
| if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } else { |
| /* v - v - u, D = D - B */ |
| if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| |
| /* if not zero goto step 4 */ |
| if (mp_iszero (&u) == 0) { |
| goto top; |
| } |
| |
| /* now a = C, b = D, gcd == g*v */ |
| |
| /* if v != 1 then there is no inverse */ |
| if (mp_cmp_d (&v, 1) != MP_EQ) { |
| res = MP_VAL; |
| goto __ERR; |
| } |
| |
| /* b is now the inverse */ |
| neg = a->sign; |
| while (D.sign == MP_NEG) { |
| if ((res = mp_add (&D, b, &D)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| mp_exch (&D, c); |
| c->sign = neg; |
| res = MP_OKAY; |
| |
| __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); |
| return res; |
| } |
| |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction |
| * |
| * This is an optimized implementation of montgomery_reduce |
| * which uses the comba method to quickly calculate the columns of the |
| * reduction. |
| * |
| * Based on Algorithm 14.32 on pp.601 of HAC. |
| */ |
| int |
| fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) |
| { |
| int ix, res, olduse; |
| mp_word W[MP_WARRAY]; |
| |
| /* get old used count */ |
| olduse = x->used; |
| |
| /* grow a as required */ |
| if (x->alloc < n->used + 1) { |
| if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* first we have to get the digits of the input into |
| * an array of double precision words W[...] |
| */ |
| { |
| register mp_word *_W; |
| register mp_digit *tmpx; |
| |
| /* alias for the W[] array */ |
| _W = W; |
| |
| /* alias for the digits of x*/ |
| tmpx = x->dp; |
| |
| /* copy the digits of a into W[0..a->used-1] */ |
| for (ix = 0; ix < x->used; ix++) { |
| *_W++ = *tmpx++; |
| } |
| |
| /* zero the high words of W[a->used..m->used*2] */ |
| for (; ix < n->used * 2 + 1; ix++) { |
| *_W++ = 0; |
| } |
| } |
| |
| /* now we proceed to zero successive digits |
| * from the least significant upwards |
| */ |
| for (ix = 0; ix < n->used; ix++) { |
| /* mu = ai * m' mod b |
| * |
| * We avoid a double precision multiplication (which isn't required) |
| * by casting the value down to a mp_digit. Note this requires |
| * that W[ix-1] have the carry cleared (see after the inner loop) |
| */ |
| register mp_digit mu; |
| mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); |
| |
| /* a = a + mu * m * b**i |
| * |
| * This is computed in place and on the fly. The multiplication |
| * by b**i is handled by offseting which columns the results |
| * are added to. |
| * |
| * Note the comba method normally doesn't handle carries in the |
| * inner loop In this case we fix the carry from the previous |
| * column since the Montgomery reduction requires digits of the |
| * result (so far) [see above] to work. This is |
| * handled by fixing up one carry after the inner loop. The |
| * carry fixups are done in order so after these loops the |
| * first m->used words of W[] have the carries fixed |
| */ |
| { |
| register int iy; |
| register mp_digit *tmpn; |
| register mp_word *_W; |
| |
| /* alias for the digits of the modulus */ |
| tmpn = n->dp; |
| |
| /* Alias for the columns set by an offset of ix */ |
| _W = W + ix; |
| |
| /* inner loop */ |
| for (iy = 0; iy < n->used; iy++) { |
| *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); |
| } |
| } |
| |
| /* now fix carry for next digit, W[ix+1] */ |
| W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); |
| } |
| |
| /* now we have to propagate the carries and |
| * shift the words downward [all those least |
| * significant digits we zeroed]. |
| */ |
| { |
| register mp_digit *tmpx; |
| register mp_word *_W, *_W1; |
| |
| /* nox fix rest of carries */ |
| |
| /* alias for current word */ |
| _W1 = W + ix; |
| |
| /* alias for next word, where the carry goes */ |
| _W = W + ++ix; |
| |
| for (; ix <= n->used * 2 + 1; ix++) { |
| *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); |
| } |
| |
| /* copy out, A = A/b**n |
| * |
| * The result is A/b**n but instead of converting from an |
| * array of mp_word to mp_digit than calling mp_rshd |
| * we just copy them in the right order |
| */ |
| |
| /* alias for destination word */ |
| tmpx = x->dp; |
| |
| /* alias for shifted double precision result */ |
| _W = W + n->used; |
| |
| for (ix = 0; ix < n->used + 1; ix++) { |
| *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); |
| } |
| |
| /* zero oldused digits, if the input a was larger than |
| * m->used+1 we'll have to clear the digits |
| */ |
| for (; ix < olduse; ix++) { |
| *tmpx++ = 0; |
| } |
| } |
| |
| /* set the max used and clamp */ |
| x->used = n->used + 1; |
| mp_clamp (x); |
| |
| /* if A >= m then A = A - m */ |
| if (mp_cmp_mag (x, n) != MP_LT) { |
| return s_mp_sub (x, n, x); |
| } |
| return MP_OKAY; |
| } |
| |
| /* Fast (comba) multiplier |
| * |
| * This is the fast column-array [comba] multiplier. It is |
| * designed to compute the columns of the product first |
| * then handle the carries afterwards. This has the effect |
| * of making the nested loops that compute the columns very |
| * simple and schedulable on super-scalar processors. |
| * |
| * This has been modified to produce a variable number of |
| * digits of output so if say only a half-product is required |
| * you don't have to compute the upper half (a feature |
| * required for fast Barrett reduction). |
| * |
| * Based on Algorithm 14.12 on pp.595 of HAC. |
| * |
| */ |
| int |
| fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| { |
| int olduse, res, pa, ix, iz; |
| mp_digit W[MP_WARRAY]; |
| register mp_word _W; |
| |
| /* grow the destination as required */ |
| if (c->alloc < digs) { |
| if ((res = mp_grow (c, digs)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* number of output digits to produce */ |
| pa = MIN(digs, a->used + b->used); |
| |
| /* clear the carry */ |
| _W = 0; |
| for (ix = 0; ix <= pa; ix++) { |
| int tx, ty; |
| int iy; |
| mp_digit *tmpx, *tmpy; |
| |
| /* get offsets into the two bignums */ |
| ty = MIN(b->used-1, ix); |
| tx = ix - ty; |
| |
| /* setup temp aliases */ |
| tmpx = a->dp + tx; |
| tmpy = b->dp + ty; |
| |
| /* this is the number of times the loop will iterrate, essentially its |
| while (tx++ < a->used && ty-- >= 0) { ... } |
| */ |
| iy = MIN(a->used-tx, ty+1); |
| |
| /* execute loop */ |
| for (iz = 0; iz < iy; ++iz) { |
| _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); |
| } |
| |
| /* store term */ |
| W[ix] = ((mp_digit)_W) & MP_MASK; |
| |
| /* make next carry */ |
| _W = _W >> ((mp_word)DIGIT_BIT); |
| } |
| |
| /* setup dest */ |
| olduse = c->used; |
| c->used = digs; |
| |
| { |
| register mp_digit *tmpc; |
| tmpc = c->dp; |
| for (ix = 0; ix < digs; ix++) { |
| /* now extract the previous digit [below the carry] */ |
| *tmpc++ = W[ix]; |
| } |
| |
| /* clear unused digits [that existed in the old copy of c] */ |
| for (; ix < olduse; ix++) { |
| *tmpc++ = 0; |
| } |
| } |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| /* this is a modified version of fast_s_mul_digs that only produces |
| * output digits *above* digs. See the comments for fast_s_mul_digs |
| * to see how it works. |
| * |
| * This is used in the Barrett reduction since for one of the multiplications |
| * only the higher digits were needed. This essentially halves the work. |
| * |
| * Based on Algorithm 14.12 on pp.595 of HAC. |
| */ |
| int |
| fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| { |
| int olduse, res, pa, ix, iz; |
| mp_digit W[MP_WARRAY]; |
| mp_word _W; |
| |
| /* grow the destination as required */ |
| pa = a->used + b->used; |
| if (c->alloc < pa) { |
| if ((res = mp_grow (c, pa)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* number of output digits to produce */ |
| pa = a->used + b->used; |
| _W = 0; |
| for (ix = digs; ix <= pa; ix++) { |
| int tx, ty, iy; |
| mp_digit *tmpx, *tmpy; |
| |
| /* get offsets into the two bignums */ |
| ty = MIN(b->used-1, ix); |
| tx = ix - ty; |
| |
| /* setup temp aliases */ |
| tmpx = a->dp + tx; |
| tmpy = b->dp + ty; |
| |
| /* this is the number of times the loop will iterrate, essentially its |
| while (tx++ < a->used && ty-- >= 0) { ... } |
| */ |
| iy = MIN(a->used-tx, ty+1); |
| |
| /* execute loop */ |
| for (iz = 0; iz < iy; iz++) { |
| _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); |
| } |
| |
| /* store term */ |
| W[ix] = ((mp_digit)_W) & MP_MASK; |
| |
| /* make next carry */ |
| _W = _W >> ((mp_word)DIGIT_BIT); |
| } |
| |
| /* setup dest */ |
| olduse = c->used; |
| c->used = pa; |
| |
| { |
| register mp_digit *tmpc; |
| |
| tmpc = c->dp + digs; |
| for (ix = digs; ix <= pa; ix++) { |
| /* now extract the previous digit [below the carry] */ |
| *tmpc++ = W[ix]; |
| } |
| |
| /* clear unused digits [that existed in the old copy of c] */ |
| for (; ix < olduse; ix++) { |
| *tmpc++ = 0; |
| } |
| } |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| /* fast squaring |
| * |
| * This is the comba method where the columns of the product |
| * are computed first then the carries are computed. This |
| * has the effect of making a very simple inner loop that |
| * is executed the most |
| * |
| * W2 represents the outer products and W the inner. |
| * |
| * A further optimizations is made because the inner |
| * products are of the form "A * B * 2". The *2 part does |
| * not need to be computed until the end which is good |
| * because 64-bit shifts are slow! |
| * |
| * Based on Algorithm 14.16 on pp.597 of HAC. |
| * |
| */ |
| /* the jist of squaring... |
| |
| you do like mult except the offset of the tmpx [one that starts closer to zero] |
| can't equal the offset of tmpy. So basically you set up iy like before then you min it with |
| (ty-tx) so that it never happens. You double all those you add in the inner loop |
| |
| After that loop you do the squares and add them in. |
| |
| Remove W2 and don't memset W |
| |
| */ |
| |
| int fast_s_mp_sqr (mp_int * a, mp_int * b) |
| { |
| int olduse, res, pa, ix, iz; |
| mp_digit W[MP_WARRAY], *tmpx; |
| mp_word W1; |
| |
| /* grow the destination as required */ |
| pa = a->used + a->used; |
| if (b->alloc < pa) { |
| if ((res = mp_grow (b, pa)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* number of output digits to produce */ |
| W1 = 0; |
| for (ix = 0; ix <= pa; ix++) { |
| int tx, ty, iy; |
| mp_word _W; |
| mp_digit *tmpy; |
| |
| /* clear counter */ |
| _W = 0; |
| |
| /* get offsets into the two bignums */ |
| ty = MIN(a->used-1, ix); |
| tx = ix - ty; |
| |
| /* setup temp aliases */ |
| tmpx = a->dp + tx; |
| tmpy = a->dp + ty; |
| |
| /* this is the number of times the loop will iterrate, essentially its |
| while (tx++ < a->used && ty-- >= 0) { ... } |
| */ |
| iy = MIN(a->used-tx, ty+1); |
| |
| /* now for squaring tx can never equal ty |
| * we halve the distance since they approach at a rate of 2x |
| * and we have to round because odd cases need to be executed |
| */ |
| iy = MIN(iy, (ty-tx+1)>>1); |
| |
| /* execute loop */ |
| for (iz = 0; iz < iy; iz++) { |
| _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); |
| } |
| |
| /* double the inner product and add carry */ |
| _W = _W + _W + W1; |
| |
| /* even columns have the square term in them */ |
| if ((ix&1) == 0) { |
| _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); |
| } |
| |
| /* store it */ |
| W[ix] = _W; |
| |
| /* make next carry */ |
| W1 = _W >> ((mp_word)DIGIT_BIT); |
| } |
| |
| /* setup dest */ |
| olduse = b->used; |
| b->used = a->used+a->used; |
| |
| { |
| mp_digit *tmpb; |
| tmpb = b->dp; |
| for (ix = 0; ix < pa; ix++) { |
| *tmpb++ = W[ix] & MP_MASK; |
| } |
| |
| /* clear unused digits [that existed in the old copy of c] */ |
| for (; ix < olduse; ix++) { |
| *tmpb++ = 0; |
| } |
| } |
| mp_clamp (b); |
| return MP_OKAY; |
| } |
| |
| /* computes a = 2**b |
| * |
| * Simple algorithm which zeroes the int, grows it then just sets one bit |
| * as required. |
| */ |
| int |
| mp_2expt (mp_int * a, int b) |
| { |
| int res; |
| |
| /* zero a as per default */ |
| mp_zero (a); |
| |
| /* grow a to accommodate the single bit */ |
| if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* set the used count of where the bit will go */ |
| a->used = b / DIGIT_BIT + 1; |
| |
| /* put the single bit in its place */ |
| a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); |
| |
| return MP_OKAY; |
| } |
| |
| /* b = |a| |
| * |
| * Simple function copies the input and fixes the sign to positive |
| */ |
| int |
| mp_abs (mp_int * a, mp_int * b) |
| { |
| int res; |
| |
| /* copy a to b */ |
| if (a != b) { |
| if ((res = mp_copy (a, b)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* force the sign of b to positive */ |
| b->sign = MP_ZPOS; |
| |
| return MP_OKAY; |
| } |
| |
| /* high level addition (handles signs) */ |
| int mp_add (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int sa, sb, res; |
| |
| /* get sign of both inputs */ |
| sa = a->sign; |
| sb = b->sign; |
| |
| /* handle two cases, not four */ |
| if (sa == sb) { |
| /* both positive or both negative */ |
| /* add their magnitudes, copy the sign */ |
| c->sign = sa; |
| res = s_mp_add (a, b, c); |
| } else { |
| /* one positive, the other negative */ |
| /* subtract the one with the greater magnitude from */ |
| /* the one of the lesser magnitude. The result gets */ |
| /* the sign of the one with the greater magnitude. */ |
| if (mp_cmp_mag (a, b) == MP_LT) { |
| c->sign = sb; |
| res = s_mp_sub (b, a, c); |
| } else { |
| c->sign = sa; |
| res = s_mp_sub (a, b, c); |
| } |
| } |
| return res; |
| } |
| |
| |
| /* single digit addition */ |
| int |
| mp_add_d (mp_int * a, mp_digit b, mp_int * c) |
| { |
| int res, ix, oldused; |
| mp_digit *tmpa, *tmpc, mu; |
| |
| /* grow c as required */ |
| if (c->alloc < a->used + 1) { |
| if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* if a is negative and |a| >= b, call c = |a| - b */ |
| if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) { |
| /* temporarily fix sign of a */ |
| a->sign = MP_ZPOS; |
| |
| /* c = |a| - b */ |
| res = mp_sub_d(a, b, c); |
| |
| /* fix sign */ |
| a->sign = c->sign = MP_NEG; |
| |
| return res; |
| } |
| |
| /* old number of used digits in c */ |
| oldused = c->used; |
| |
| /* sign always positive */ |
| c->sign = MP_ZPOS; |
| |
| /* source alias */ |
| tmpa = a->dp; |
| |
| /* destination alias */ |
| tmpc = c->dp; |
| |
| /* if a is positive */ |
| if (a->sign == MP_ZPOS) { |
| /* add digit, after this we're propagating |
| * the carry. |
| */ |
| *tmpc = *tmpa++ + b; |
| mu = *tmpc >> DIGIT_BIT; |
| *tmpc++ &= MP_MASK; |
| |
| /* now handle rest of the digits */ |
| for (ix = 1; ix < a->used; ix++) { |
| *tmpc = *tmpa++ + mu; |
| mu = *tmpc >> DIGIT_BIT; |
| *tmpc++ &= MP_MASK; |
| } |
| /* set final carry */ |
| ix++; |
| *tmpc++ = mu; |
| |
| /* setup size */ |
| c->used = a->used + 1; |
| } else { |
| /* a was negative and |a| < b */ |
| c->used = 1; |
| |
| /* the result is a single digit */ |
| if (a->used == 1) { |
| *tmpc++ = b - a->dp[0]; |
| } else { |
| *tmpc++ = b; |
| } |
| |
| /* setup count so the clearing of oldused |
| * can fall through correctly |
| */ |
| ix = 1; |
| } |
| |
| /* now zero to oldused */ |
| while (ix++ < oldused) { |
| *tmpc++ = 0; |
| } |
| mp_clamp(c); |
| |
| return MP_OKAY; |
| } |
| |
| /* trim unused digits |
| * |
| * This is used to ensure that leading zero digits are |
| * trimed and the leading "used" digit will be non-zero |
| * Typically very fast. Also fixes the sign if there |
| * are no more leading digits |
| */ |
| void |
| mp_clamp (mp_int * a) |
| { |
| /* decrease used while the most significant digit is |
| * zero. |
| */ |
| while (a->used > 0 && a->dp[a->used - 1] == 0) { |
| --(a->used); |
| } |
| |
| /* reset the sign flag if used == 0 */ |
| if (a->used == 0) { |
| a->sign = MP_ZPOS; |
| } |
| } |
| |
| /* clear one (frees) */ |
| void |
| mp_clear (mp_int * a) |
| { |
| int i; |
| |
| /* only do anything if a hasn't been freed previously */ |
| if (a->dp != NULL) { |
| /* first zero the digits */ |
| for (i = 0; i < a->used; i++) { |
| a->dp[i] = 0; |
| } |
| |
| /* free ram */ |
| free(a->dp); |
| |
| /* reset members to make debugging easier */ |
| a->dp = NULL; |
| a->alloc = a->used = 0; |
| a->sign = MP_ZPOS; |
| } |
| } |
| |
| |
| void mp_clear_multi(mp_int *mp, ...) |
| { |
| mp_int* next_mp = mp; |
| va_list args; |
| va_start(args, mp); |
| while (next_mp != NULL) { |
| mp_clear(next_mp); |
| next_mp = va_arg(args, mp_int*); |
| } |
| va_end(args); |
| } |
| |
| /* compare two ints (signed)*/ |
| int |
| mp_cmp (mp_int * a, mp_int * b) |
| { |
| /* compare based on sign */ |
| if (a->sign != b->sign) { |
| if (a->sign == MP_NEG) { |
| return MP_LT; |
| } else { |
| return MP_GT; |
| } |
| } |
| |
| /* compare digits */ |
| if (a->sign == MP_NEG) { |
| /* if negative compare opposite direction */ |
| return mp_cmp_mag(b, a); |
| } else { |
| return mp_cmp_mag(a, b); |
| } |
| } |
| |
| /* compare a digit */ |
| int mp_cmp_d(mp_int * a, mp_digit b) |
| { |
| /* compare based on sign */ |
| if (a->sign == MP_NEG) { |
| return MP_LT; |
| } |
| |
| /* compare based on magnitude */ |
| if (a->used > 1) { |
| return MP_GT; |
| } |
| |
| /* compare the only digit of a to b */ |
| if (a->dp[0] > b) { |
| return MP_GT; |
| } else if (a->dp[0] < b) { |
| return MP_LT; |
| } else { |
| return MP_EQ; |
| } |
| } |
| |
| /* compare maginitude of two ints (unsigned) */ |
| int mp_cmp_mag (mp_int * a, mp_int * b) |
| { |
| int n; |
| mp_digit *tmpa, *tmpb; |
| |
| /* compare based on # of non-zero digits */ |
| if (a->used > b->used) { |
| return MP_GT; |
| } |
| |
| if (a->used < b->used) { |
| return MP_LT; |
| } |
| |
| /* alias for a */ |
| tmpa = a->dp + (a->used - 1); |
| |
| /* alias for b */ |
| tmpb = b->dp + (a->used - 1); |
| |
| /* compare based on digits */ |
| for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { |
| if (*tmpa > *tmpb) { |
| return MP_GT; |
| } |
| |
| if (*tmpa < *tmpb) { |
| return MP_LT; |
| } |
| } |
| return MP_EQ; |
| } |
| |
| static const int lnz[16] = { |
| 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 |
| }; |
| |
| /* Counts the number of lsbs which are zero before the first zero bit */ |
| int mp_cnt_lsb(mp_int *a) |
| { |
| int x; |
| mp_digit q, qq; |
| |
| /* easy out */ |
| if (mp_iszero(a) == 1) { |
| return 0; |
| } |
| |
| /* scan lower digits until non-zero */ |
| for (x = 0; x < a->used && a->dp[x] == 0; x++); |
| q = a->dp[x]; |
| x *= DIGIT_BIT; |
| |
| /* now scan this digit until a 1 is found */ |
| if ((q & 1) == 0) { |
| do { |
| qq = q & 15; |
| x += lnz[qq]; |
| q >>= 4; |
| } while (qq == 0); |
| } |
| return x; |
| } |
| |
| /* copy, b = a */ |
| int |
| mp_copy (const mp_int * a, mp_int * b) |
| { |
| int res, n; |
| |
| /* if dst == src do nothing */ |
| if (a == b) { |
| return MP_OKAY; |
| } |
| |
| /* grow dest */ |
| if (b->alloc < a->used) { |
| if ((res = mp_grow (b, a->used)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* zero b and copy the parameters over */ |
| { |
| register mp_digit *tmpa, *tmpb; |
| |
| /* pointer aliases */ |
| |
| /* source */ |
| tmpa = a->dp; |
| |
| /* destination */ |
| tmpb = b->dp; |
| |
| /* copy all the digits */ |
| for (n = 0; n < a->used; n++) { |
| *tmpb++ = *tmpa++; |
| } |
| |
| /* clear high digits */ |
| for (; n < b->used; n++) { |
| *tmpb++ = 0; |
| } |
| } |
| |
| /* copy used count and sign */ |
| b->used = a->used; |
| b->sign = a->sign; |
| return MP_OKAY; |
| } |
| |
| /* returns the number of bits in an int */ |
| int |
| mp_count_bits (mp_int * a) |
| { |
| int r; |
| mp_digit q; |
| |
| /* shortcut */ |
| if (a->used == 0) { |
| return 0; |
| } |
| |
| /* get number of digits and add that */ |
| r = (a->used - 1) * DIGIT_BIT; |
| |
| /* take the last digit and count the bits in it */ |
| q = a->dp[a->used - 1]; |
| while (q > ((mp_digit) 0)) { |
| ++r; |
| q >>= ((mp_digit) 1); |
| } |
| return r; |
| } |
| |
| /* integer signed division. |
| * c*b + d == a [e.g. a/b, c=quotient, d=remainder] |
| * HAC pp.598 Algorithm 14.20 |
| * |
| * Note that the description in HAC is horribly |
| * incomplete. For example, it doesn't consider |
| * the case where digits are removed from 'x' in |
| * the inner loop. It also doesn't consider the |
| * case that y has fewer than three digits, etc.. |
| * |
| * The overall algorithm is as described as |
| * 14.20 from HAC but fixed to treat these cases. |
| */ |
| int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| { |
| mp_int q, x, y, t1, t2; |
| int res, n, t, i, norm, neg; |
| |
| /* is divisor zero ? */ |
| if (mp_iszero (b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* if a < b then q=0, r = a */ |
| if (mp_cmp_mag (a, b) == MP_LT) { |
| if (d != NULL) { |
| res = mp_copy (a, d); |
| } else { |
| res = MP_OKAY; |
| } |
| if (c != NULL) { |
| mp_zero (c); |
| } |
| return res; |
| } |
| |
| if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { |
| return res; |
| } |
| q.used = a->used + 2; |
| |
| if ((res = mp_init (&t1)) != MP_OKAY) { |
| goto __Q; |
| } |
| |
| if ((res = mp_init (&t2)) != MP_OKAY) { |
| goto __T1; |
| } |
| |
| if ((res = mp_init_copy (&x, a)) != MP_OKAY) { |
| goto __T2; |
| } |
| |
| if ((res = mp_init_copy (&y, b)) != MP_OKAY) { |
| goto __X; |
| } |
| |
| /* fix the sign */ |
| neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
| x.sign = y.sign = MP_ZPOS; |
| |
| /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ |
| norm = mp_count_bits(&y) % DIGIT_BIT; |
| if (norm < (int)(DIGIT_BIT-1)) { |
| norm = (DIGIT_BIT-1) - norm; |
| if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { |
| goto __Y; |
| } |
| if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { |
| goto __Y; |
| } |
| } else { |
| norm = 0; |
| } |
| |
| /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ |
| n = x.used - 1; |
| t = y.used - 1; |
| |
| /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ |
| if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ |
| goto __Y; |
| } |
| |
| while (mp_cmp (&x, &y) != MP_LT) { |
| ++(q.dp[n - t]); |
| if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { |
| goto __Y; |
| } |
| } |
| |
| /* reset y by shifting it back down */ |
| mp_rshd (&y, n - t); |
| |
| /* step 3. for i from n down to (t + 1) */ |
| for (i = n; i >= (t + 1); i--) { |
| if (i > x.used) { |
| continue; |
| } |
| |
| /* step 3.1 if xi == yt then set q{i-t-1} to b-1, |
| * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ |
| if (x.dp[i] == y.dp[t]) { |
| q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); |
| } else { |
| mp_word tmp; |
| tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); |
| tmp |= ((mp_word) x.dp[i - 1]); |
| tmp /= ((mp_word) y.dp[t]); |
| if (tmp > (mp_word) MP_MASK) |
| tmp = MP_MASK; |
| q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); |
| } |
| |
| /* while (q{i-t-1} * (yt * b + y{t-1})) > |
| xi * b**2 + xi-1 * b + xi-2 |
| |
| do q{i-t-1} -= 1; |
| */ |
| q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; |
| do { |
| q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; |
| |
| /* find left hand */ |
| mp_zero (&t1); |
| t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; |
| t1.dp[1] = y.dp[t]; |
| t1.used = 2; |
| if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
| goto __Y; |
| } |
| |
| /* find right hand */ |
| t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; |
| t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; |
| t2.dp[2] = x.dp[i]; |
| t2.used = 3; |
| } while (mp_cmp_mag(&t1, &t2) == MP_GT); |
| |
| /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ |
| if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
| goto __Y; |
| } |
| |
| if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
| goto __Y; |
| } |
| |
| if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { |
| goto __Y; |
| } |
| |
| /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ |
| if (x.sign == MP_NEG) { |
| if ((res = mp_copy (&y, &t1)) != MP_OKAY) { |
| goto __Y; |
| } |
| if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
| goto __Y; |
| } |
| if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { |
| goto __Y; |
| } |
| |
| q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; |
| } |
| } |
| |
| /* now q is the quotient and x is the remainder |
| * [which we have to normalize] |
| */ |
| |
| /* get sign before writing to c */ |
| x.sign = x.used == 0 ? MP_ZPOS : a->sign; |
| |
| if (c != NULL) { |
| mp_clamp (&q); |
| mp_exch (&q, c); |
| c->sign = neg; |
| } |
| |
| if (d != NULL) { |
| mp_div_2d (&x, norm, &x, NULL); |
| mp_exch (&x, d); |
| } |
| |
| res = MP_OKAY; |
| |
| __Y:mp_clear (&y); |
| __X:mp_clear (&x); |
| __T2:mp_clear (&t2); |
| __T1:mp_clear (&t1); |
| __Q:mp_clear (&q); |
| return res; |
| } |
| |
| /* b = a/2 */ |
| int mp_div_2(mp_int * a, mp_int * b) |
| { |
| int x, res, oldused; |
| |
| /* copy */ |
| if (b->alloc < a->used) { |
| if ((res = mp_grow (b, a->used)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| oldused = b->used; |
| b->used = a->used; |
| { |
| register mp_digit r, rr, *tmpa, *tmpb; |
| |
| /* source alias */ |
| tmpa = a->dp + b->used - 1; |
| |
| /* dest alias */ |
| tmpb = b->dp + b->used - 1; |
| |
| /* carry */ |
| r = 0; |
| for (x = b->used - 1; x >= 0; x--) { |
| /* get the carry for the next iteration */ |
| rr = *tmpa & 1; |
| |
| /* shift the current digit, add in carry and store */ |
| *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); |
| |
| /* forward carry to next iteration */ |
| r = rr; |
| } |
| |
| /* zero excess digits */ |
| tmpb = b->dp + b->used; |
| for (x = b->used; x < oldused; x++) { |
| *tmpb++ = 0; |
| } |
| } |
| b->sign = a->sign; |
| mp_clamp (b); |
| return MP_OKAY; |
| } |
| |
| /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ |
| int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) |
| { |
| mp_digit D, r, rr; |
| int x, res; |
| mp_int t; |
| |
| |
| /* if the shift count is <= 0 then we do no work */ |
| if (b <= 0) { |
| res = mp_copy (a, c); |
| if (d != NULL) { |
| mp_zero (d); |
| } |
| return res; |
| } |
| |
| if ((res = mp_init (&t)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* get the remainder */ |
| if (d != NULL) { |
| if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| } |
| |
| /* copy */ |
| if ((res = mp_copy (a, c)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| |
| /* shift by as many digits in the bit count */ |
| if (b >= (int)DIGIT_BIT) { |
| mp_rshd (c, b / DIGIT_BIT); |
| } |
| |
| /* shift any bit count < DIGIT_BIT */ |
| D = (mp_digit) (b % DIGIT_BIT); |
| if (D != 0) { |
| register mp_digit *tmpc, mask, shift; |
| |
| /* mask */ |
| mask = (((mp_digit)1) << D) - 1; |
| |
| /* shift for lsb */ |
| shift = DIGIT_BIT - D; |
| |
| /* alias */ |
| tmpc = c->dp + (c->used - 1); |
| |
| /* carry */ |
| r = 0; |
| for (x = c->used - 1; x >= 0; x--) { |
| /* get the lower bits of this word in a temp */ |
| rr = *tmpc & mask; |
| |
| /* shift the current word and mix in the carry bits from the previous word */ |
| *tmpc = (*tmpc >> D) | (r << shift); |
| --tmpc; |
| |
| /* set the carry to the carry bits of the current word found above */ |
| r = rr; |
| } |
| } |
| mp_clamp (c); |
| if (d != NULL) { |
| mp_exch (&t, d); |
| } |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| static int s_is_power_of_two(mp_digit b, int *p) |
| { |
| int x; |
| |
| for (x = 1; x < DIGIT_BIT; x++) { |
| if (b == (((mp_digit)1)<<x)) { |
| *p = x; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* single digit division (based on routine from MPI) */ |
| int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) |
| { |
| mp_int q; |
| mp_word w; |
| mp_digit t; |
| int res, ix; |
| |
| /* cannot divide by zero */ |
| if (b == 0) { |
| return MP_VAL; |
| } |
| |
| /* quick outs */ |
| if (b == 1 || mp_iszero(a) == 1) { |
| if (d != NULL) { |
| *d = 0; |
| } |
| if (c != NULL) { |
| return mp_copy(a, c); |
| } |
| return MP_OKAY; |
| } |
| |
| /* power of two ? */ |
| if (s_is_power_of_two(b, &ix) == 1) { |
| if (d != NULL) { |
| *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1); |
| } |
| if (c != NULL) { |
| return mp_div_2d(a, ix, c, NULL); |
| } |
| return MP_OKAY; |
| } |
| |
| /* no easy answer [c'est la vie]. Just division */ |
| if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { |
| return res; |
| } |
| |
| q.used = a->used; |
| q.sign = a->sign; |
| w = 0; |
| for (ix = a->used - 1; ix >= 0; ix--) { |
| w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); |
| |
| if (w >= b) { |
| t = (mp_digit)(w / b); |
| w -= ((mp_word)t) * ((mp_word)b); |
| } else { |
| t = 0; |
| } |
| q.dp[ix] = (mp_digit)t; |
| } |
| |
| if (d != NULL) { |
| *d = (mp_digit)w; |
| } |
| |
| if (c != NULL) { |
| mp_clamp(&q); |
| mp_exch(&q, c); |
| } |
| mp_clear(&q); |
| |
| return res; |
| } |
| |
| /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. |
| * |
| * Based on algorithm from the paper |
| * |
| * "Generating Efficient Primes for Discrete Log Cryptosystems" |
| * Chae Hoon Lim, Pil Loong Lee, |
| * POSTECH Information Research Laboratories |
| * |
| * The modulus must be of a special format [see manual] |
| * |
| * Has been modified to use algorithm 7.10 from the LTM book instead |
| * |
| * Input x must be in the range 0 <= x <= (n-1)**2 |
| */ |
| int |
| mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k) |
| { |
| int err, i, m; |
| mp_word r; |
| mp_digit mu, *tmpx1, *tmpx2; |
| |
| /* m = digits in modulus */ |
| m = n->used; |
| |
| /* ensure that "x" has at least 2m digits */ |
| if (x->alloc < m + m) { |
| if ((err = mp_grow (x, m + m)) != MP_OKAY) { |
| return err; |
| } |
| } |
| |
| /* top of loop, this is where the code resumes if |
| * another reduction pass is required. |
| */ |
| top: |
| /* aliases for digits */ |
| /* alias for lower half of x */ |
| tmpx1 = x->dp; |
| |
| /* alias for upper half of x, or x/B**m */ |
| tmpx2 = x->dp + m; |
| |
| /* set carry to zero */ |
| mu = 0; |
| |
| /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ |
| for (i = 0; i < m; i++) { |
| r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu; |
| *tmpx1++ = (mp_digit)(r & MP_MASK); |
| mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); |
| } |
| |
| /* set final carry */ |
| *tmpx1++ = mu; |
| |
| /* zero words above m */ |
| for (i = m + 1; i < x->used; i++) { |
| *tmpx1++ = 0; |
| } |
| |
| /* clamp, sub and return */ |
| mp_clamp (x); |
| |
| /* if x >= n then subtract and reduce again |
| * Each successive "recursion" makes the input smaller and smaller. |
| */ |
| if (mp_cmp_mag (x, n) != MP_LT) { |
| s_mp_sub(x, n, x); |
| goto top; |
| } |
| return MP_OKAY; |
| } |
| |
| /* determines the setup value */ |
| void mp_dr_setup(mp_int *a, mp_digit *d) |
| { |
| /* the casts are required if DIGIT_BIT is one less than |
| * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] |
| */ |
| *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - |
| ((mp_word)a->dp[0])); |
| } |
| |
| /* swap the elements of two integers, for cases where you can't simply swap the |
| * mp_int pointers around |
| */ |
| void |
| mp_exch (mp_int * a, mp_int * b) |
| { |
| mp_int t; |
| |
| t = *a; |
| *a = *b; |
| *b = t; |
| } |
| |
| /* this is a shell function that calls either the normal or Montgomery |
| * exptmod functions. Originally the call to the montgomery code was |
| * embedded in the normal function but that wasted a lot of stack space |
| * for nothing (since 99% of the time the Montgomery code would be called) |
| */ |
| int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) |
| { |
| int dr; |
| |
| /* modulus P must be positive */ |
| if (P->sign == MP_NEG) { |
| return MP_VAL; |
| } |
| |
| /* if exponent X is negative we have to recurse */ |
| if (X->sign == MP_NEG) { |
| mp_int tmpG, tmpX; |
| int err; |
| |
| /* first compute 1/G mod P */ |
| if ((err = mp_init(&tmpG)) != MP_OKAY) { |
| return err; |
| } |
| if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { |
| mp_clear(&tmpG); |
| return err; |
| } |
| |
| /* now get |X| */ |
| if ((err = mp_init(&tmpX)) != MP_OKAY) { |
| mp_clear(&tmpG); |
| return err; |
| } |
| if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { |
| mp_clear_multi(&tmpG, &tmpX, NULL); |
| return err; |
| } |
| |
| /* and now compute (1/G)**|X| instead of G**X [X < 0] */ |
| err = mp_exptmod(&tmpG, &tmpX, P, Y); |
| mp_clear_multi(&tmpG, &tmpX, NULL); |
| return err; |
| } |
| |
| dr = 0; |
| |
| /* if the modulus is odd or dr != 0 use the fast method */ |
| if (mp_isodd (P) == 1 || dr != 0) { |
| return mp_exptmod_fast (G, X, P, Y, dr); |
| } else { |
| /* otherwise use the generic Barrett reduction technique */ |
| return s_mp_exptmod (G, X, P, Y); |
| } |
| } |
| |
| /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 |
| * |
| * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. |
| * The value of k changes based on the size of the exponent. |
| * |
| * Uses Montgomery or Diminished Radix reduction [whichever appropriate] |
| */ |
| |
| int |
| mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) |
| { |
| mp_int M[256], res; |
| mp_digit buf, mp; |
| int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; |
| |
| /* use a pointer to the reduction algorithm. This allows us to use |
| * one of many reduction algorithms without modding the guts of |
| * the code with if statements everywhere. |
| */ |
| int (*redux)(mp_int*,mp_int*,mp_digit); |
| |
| /* find window size */ |
| x = mp_count_bits (X); |
| if (x <= 7) { |
| winsize = 2; |
| } else if (x <= 36) { |
| winsize = 3; |
| } else if (x <= 140) { |
| winsize = 4; |
| } else if (x <= 450) { |
| winsize = 5; |
| } else if (x <= 1303) { |
| winsize = 6; |
| } else if (x <= 3529) { |
| winsize = 7; |
| } else { |
| winsize = 8; |
| } |
| |
| /* init M array */ |
| /* init first cell */ |
| if ((err = mp_init(&M[1])) != MP_OKAY) { |
| return err; |
| } |
| |
| /* now init the second half of the array */ |
| for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| if ((err = mp_init(&M[x])) != MP_OKAY) { |
| for (y = 1<<(winsize-1); y < x; y++) { |
| mp_clear (&M[y]); |
| } |
| mp_clear(&M[1]); |
| return err; |
| } |
| } |
| |
| /* determine and setup reduction code */ |
| if (redmode == 0) { |
| /* now setup montgomery */ |
| if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { |
| goto __M; |
| } |
| |
| /* automatically pick the comba one if available (saves quite a few calls/ifs) */ |
| if (((P->used * 2 + 1) < MP_WARRAY) && |
| P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| redux = fast_mp_montgomery_reduce; |
| } else { |
| /* use slower baseline Montgomery method */ |
| redux = mp_montgomery_reduce; |
| } |
| } else if (redmode == 1) { |
| /* setup DR reduction for moduli of the form B**k - b */ |
| mp_dr_setup(P, &mp); |
| redux = mp_dr_reduce; |
| } else { |
| /* setup DR reduction for moduli of the form 2**k - b */ |
| if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { |
| goto __M; |
| } |
| redux = mp_reduce_2k; |
| } |
| |
| /* setup result */ |
| if ((err = mp_init (&res)) != MP_OKAY) { |
| goto __M; |
| } |
| |
| /* create M table |
| * |
| |
| * |
| * The first half of the table is not computed though accept for M[0] and M[1] |
| */ |
| |
| if (redmode == 0) { |
| /* now we need R mod m */ |
| if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { |
| goto __RES; |
| } |
| |
| /* now set M[1] to G * R mod m */ |
| if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { |
| goto __RES; |
| } |
| } else { |
| mp_set(&res, 1); |
| if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { |
| goto __RES; |
| } |
| } |
| |
| /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ |
| if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { |
| goto __RES; |
| } |
| |
| for (x = 0; x < (winsize - 1); x++) { |
| if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { |
| goto __RES; |
| } |
| } |
| |
| /* create upper table */ |
| for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { |
| if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = redux (&M[x], P, mp)) != MP_OKAY) { |
| goto __RES; |
| } |
| } |
| |
| /* set initial mode and bit cnt */ |
| mode = 0; |
| bitcnt = 1; |
| buf = 0; |
| digidx = X->used - 1; |
| bitcpy = 0; |
| bitbuf = 0; |
| |
| for (;;) { |
| /* grab next digit as required */ |
| if (--bitcnt == 0) { |
| /* if digidx == -1 we are out of digits so break */ |
| if (digidx == -1) { |
| break; |
| } |
| /* read next digit and reset bitcnt */ |
| buf = X->dp[digidx--]; |
| bitcnt = (int)DIGIT_BIT; |
| } |
| |
| /* grab the next msb from the exponent */ |
| y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; |
| buf <<= (mp_digit)1; |
| |
| /* if the bit is zero and mode == 0 then we ignore it |
| * These represent the leading zero bits before the first 1 bit |
| * in the exponent. Technically this opt is not required but it |
| * does lower the # of trivial squaring/reductions used |
| */ |
| if (mode == 0 && y == 0) { |
| continue; |
| } |
| |
| /* if the bit is zero and mode == 1 then we square */ |
| if (mode == 1 && y == 0) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto __RES; |
| } |
| continue; |
| } |
| |
| /* else we add it to the window */ |
| bitbuf |= (y << (winsize - ++bitcpy)); |
| mode = 2; |
| |
| if (bitcpy == winsize) { |
| /* ok window is filled so square as required and multiply */ |
| /* square first */ |
| for (x = 0; x < winsize; x++) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto __RES; |
| } |
| } |
| |
| /* then multiply */ |
| if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto __RES; |
| } |
| |
| /* empty window and reset */ |
| bitcpy = 0; |
| bitbuf = 0; |
| mode = 1; |
| } |
| } |
| |
| /* if bits remain then square/multiply */ |
| if (mode == 2 && bitcpy > 0) { |
| /* square then multiply if the bit is set */ |
| for (x = 0; x < bitcpy; x++) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto __RES; |
| } |
| |
| /* get next bit of the window */ |
| bitbuf <<= 1; |
| if ((bitbuf & (1 << winsize)) != 0) { |
| /* then multiply */ |
| if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto __RES; |
| } |
| } |
| } |
| } |
| |
| if (redmode == 0) { |
| /* fixup result if Montgomery reduction is used |
| * recall that any value in a Montgomery system is |
| * actually multiplied by R mod n. So we have |
| * to reduce one more time to cancel out the factor |
| * of R. |
| */ |
| if ((err = redux(&res, P, mp)) != MP_OKAY) { |
| goto __RES; |
| } |
| } |
| |
| /* swap res with Y */ |
| mp_exch (&res, Y); |
| err = MP_OKAY; |
| __RES:mp_clear (&res); |
| __M: |
| mp_clear(&M[1]); |
| for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| mp_clear (&M[x]); |
| } |
| return err; |
| } |
| |
| /* Greatest Common Divisor using the binary method */ |
| int mp_gcd (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int u, v; |
| int k, u_lsb, v_lsb, res; |
| |
| /* either zero than gcd is the largest */ |
| if (mp_iszero (a) == 1 && mp_iszero (b) == 0) { |
| return mp_abs (b, c); |
| } |
| if (mp_iszero (a) == 0 && mp_iszero (b) == 1) { |
| return mp_abs (a, c); |
| } |
| |
| /* optimized. At this point if a == 0 then |
| * b must equal zero too |
| */ |
| if (mp_iszero (a) == 1) { |
| mp_zero(c); |
| return MP_OKAY; |
| } |
| |
| /* get copies of a and b we can modify */ |
| if ((res = mp_init_copy (&u, a)) != MP_OKAY) { |
| return res; |
| } |
| |
| if ((res = mp_init_copy (&v, b)) != MP_OKAY) { |
| goto __U; |
| } |
| |
| /* must be positive for the remainder of the algorithm */ |
| u.sign = v.sign = MP_ZPOS; |
| |
| /* B1. Find the common power of two for u and v */ |
| u_lsb = mp_cnt_lsb(&u); |
| v_lsb = mp_cnt_lsb(&v); |
| k = MIN(u_lsb, v_lsb); |
| |
| if (k > 0) { |
| /* divide the power of two out */ |
| if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { |
| goto __V; |
| } |
| |
| if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { |
| goto __V; |
| } |
| } |
| |
| /* divide any remaining factors of two out */ |
| if (u_lsb != k) { |
| if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { |
| goto __V; |
| } |
| } |
| |
| if (v_lsb != k) { |
| if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { |
| goto __V; |
| } |
| } |
| |
| while (mp_iszero(&v) == 0) { |
| /* make sure v is the largest */ |
| if (mp_cmp_mag(&u, &v) == MP_GT) { |
| /* swap u and v to make sure v is >= u */ |
| mp_exch(&u, &v); |
| } |
| |
| /* subtract smallest from largest */ |
| if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { |
| goto __V; |
| } |
| |
| /* Divide out all factors of two */ |
| if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { |
| goto __V; |
| } |
| } |
| |
| /* multiply by 2**k which we divided out at the beginning */ |
| if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { |
| goto __V; |
| } |
| c->sign = MP_ZPOS; |
| res = MP_OKAY; |
| __V:mp_clear (&u); |
| __U:mp_clear (&v); |
| return res; |
| } |
| |
| /* get the lower 32-bits of an mp_int */ |
| unsigned long mp_get_int(mp_int * a) |
| { |
| int i; |
| unsigned long res; |
| |
| if (a->used == 0) { |
| return 0; |
| } |
| |
| /* get number of digits of the lsb we have to read */ |
| i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1; |
| |
| /* get most significant digit of result */ |
| res = DIGIT(a,i); |
| |
| while (--i >= 0) { |
| res = (res << DIGIT_BIT) | DIGIT(a,i); |
| } |
| |
| /* force result to 32-bits always so it is consistent on non 32-bit platforms */ |
| return res & 0xFFFFFFFFUL; |
| } |
| |
| /* grow as required */ |
| int mp_grow (mp_int * a, int size) |
| { |
| int i; |
| mp_digit *tmp; |
| |
| /* if the alloc size is smaller alloc more ram */ |
| if (a->alloc < size) { |
| /* ensure there are always at least MP_PREC digits extra on top */ |
| size += (MP_PREC * 2) - (size % MP_PREC); |
| |
| /* reallocate the array a->dp |
| * |
| * We store the return in a temporary variable |
| * in case the operation failed we don't want |
| * to overwrite the dp member of a. |
| */ |
| tmp = realloc (a->dp, sizeof (mp_digit) * size); |
| if (tmp == NULL) { |
| /* reallocation failed but "a" is still valid [can be freed] */ |
| return MP_MEM; |
| } |
| |
| /* reallocation succeeded so set a->dp */ |
| a->dp = tmp; |
| |
| /* zero excess digits */ |
| i = a->alloc; |
| a->alloc = size; |
| for (; i < a->alloc; i++) { |
| a->dp[i] = 0; |
| } |
| } |
| return MP_OKAY; |
| } |
| |
| /* init a new mp_int */ |
| int mp_init (mp_int * a) |
| { |
| int i; |
| |
| /* allocate memory required and clear it */ |
| a->dp = malloc (sizeof (mp_digit) * MP_PREC); |
| if (a->dp == NULL) { |
| return MP_MEM; |
| } |
| |
| /* set the digits to zero */ |
| for (i = 0; i < MP_PREC; i++) { |
| a->dp[i] = 0; |
| } |
| |
| /* set the used to zero, allocated digits to the default precision |
| * and sign to positive */ |
| a->used = 0; |
| a->alloc = MP_PREC; |
| a->sign = MP_ZPOS; |
| |
| return MP_OKAY; |
| } |
| |
| /* creates "a" then copies b into it */ |
| int mp_init_copy (mp_int * a, const mp_int * b) |
| { |
| int res; |
| |
| if ((res = mp_init (a)) != MP_OKAY) { |
| return res; |
| } |
| return mp_copy (b, a); |
| } |
| |
| int mp_init_multi(mp_int *mp, ...) |
| { |
| mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ |
| int n = 0; /* Number of ok inits */ |
| mp_int* cur_arg = mp; |
| va_list args; |
| |
| va_start(args, mp); /* init args to next argument from caller */ |
| while (cur_arg != NULL) { |
| if (mp_init(cur_arg) != MP_OKAY) { |
| /* Oops - error! Back-track and mp_clear what we already |
| succeeded in init-ing, then return error. |
| */ |
| va_list clean_args; |
| |
| /* end the current list */ |
| va_end(args); |
| |
| /* now start cleaning up */ |
| cur_arg = mp; |
| va_start(clean_args, mp); |
| while (n--) { |
| mp_clear(cur_arg); |
| cur_arg = va_arg(clean_args, mp_int*); |
| } |
| va_end(clean_args); |
| res = MP_MEM; |
| break; |
| } |
| n++; |
| cur_arg = va_arg(args, mp_int*); |
| } |
| va_end(args); |
| return res; /* Assumed ok, if error flagged above. */ |
| } |
| |
| /* init an mp_init for a given size */ |
| int mp_init_size (mp_int * a, int size) |
| { |
| int x; |
| |
| /* pad size so there are always extra digits */ |
| size += (MP_PREC * 2) - (size % MP_PREC); |
| |
| /* alloc mem */ |
| a->dp = malloc (sizeof (mp_digit) * size); |
| if (a->dp == NULL) { |
| return MP_MEM; |
| } |
| |
| /* set the members */ |
| a->used = 0; |
| a->alloc = size; |
| a->sign = MP_ZPOS; |
| |
| /* zero the digits */ |
| for (x = 0; x < size; x++) { |
| a->dp[x] = 0; |
| } |
| |
| return MP_OKAY; |
| } |
| |
| /* hac 14.61, pp608 */ |
| int mp_invmod (mp_int * a, mp_int * b, mp_int * c) |
| { |
| /* b cannot be negative */ |
| if (b->sign == MP_NEG || mp_iszero(b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* if the modulus is odd we can use a faster routine instead */ |
| if (mp_isodd (b) == 1) { |
| return fast_mp_invmod (a, b, c); |
| } |
| |
| return mp_invmod_slow(a, b, c); |
| } |
| |
| /* hac 14.61, pp608 */ |
| int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int x, y, u, v, A, B, C, D; |
| int res; |
| |
| /* b cannot be negative */ |
| if (b->sign == MP_NEG || mp_iszero(b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* init temps */ |
| if ((res = mp_init_multi(&x, &y, &u, &v, |
| &A, &B, &C, &D, NULL)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* x = a, y = b */ |
| if ((res = mp_copy (a, &x)) != MP_OKAY) { |
| goto __ERR; |
| } |
| if ((res = mp_copy (b, &y)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| /* 2. [modified] if x,y are both even then return an error! */ |
| if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { |
| res = MP_VAL; |
| goto __ERR; |
| } |
| |
| /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
| if ((res = mp_copy (&x, &u)) != MP_OKAY) { |
| goto __ERR; |
| } |
| if ((res = mp_copy (&y, &v)) != MP_OKAY) { |
| goto __ERR; |
| } |
| mp_set (&A, 1); |
| mp_set (&D, 1); |
| |
| top: |
| /* 4. while u is even do */ |
| while (mp_iseven (&u) == 1) { |
| /* 4.1 u = u/2 */ |
| if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { |
| goto __ERR; |
| } |
| /* 4.2 if A or B is odd then */ |
| if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { |
| /* A = (A+y)/2, B = (B-x)/2 */ |
| if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { |
| goto __ERR; |
| } |
| if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| /* A = A/2, B = B/2 */ |
| if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { |
| goto __ERR; |
| } |
| if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| |
| /* 5. while v is even do */ |
| while (mp_iseven (&v) == 1) { |
| /* 5.1 v = v/2 */ |
| if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { |
| goto __ERR; |
| } |
| /* 5.2 if C or D is odd then */ |
| if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { |
| /* C = (C+y)/2, D = (D-x)/2 */ |
| if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { |
| goto __ERR; |
| } |
| if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| /* C = C/2, D = D/2 */ |
| if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { |
| goto __ERR; |
| } |
| if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| |
| /* 6. if u >= v then */ |
| if (mp_cmp (&u, &v) != MP_LT) { |
| /* u = u - v, A = A - C, B = B - D */ |
| if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } else { |
| /* v - v - u, C = C - A, D = D - B */ |
| if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { |
| goto __ERR; |
| } |
| |
| if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| |
| /* if not zero goto step 4 */ |
| if (mp_iszero (&u) == 0) |
| goto top; |
| |
| /* now a = C, b = D, gcd == g*v */ |
| |
| /* if v != 1 then there is no inverse */ |
| if (mp_cmp_d (&v, 1) != MP_EQ) { |
| res = MP_VAL; |
| goto __ERR; |
| } |
| |
| /* if its too low */ |
| while (mp_cmp_d(&C, 0) == MP_LT) { |
| if ((res = mp_add(&C, b, &C)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| |
| /* too big */ |
| while (mp_cmp_mag(&C, b) != MP_LT) { |
| if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { |
| goto __ERR; |
| } |
| } |
| |
| /* C is now the inverse */ |
| mp_exch (&C, c); |
| res = MP_OKAY; |
| __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); |
| return res; |
| } |
| |
| /* c = |a| * |b| using Karatsuba Multiplication using |
| * three half size multiplications |
| * |
| * Let B represent the radix [e.g. 2**DIGIT_BIT] and |
| * let n represent half of the number of digits in |
| * the min(a,b) |
| * |
| * a = a1 * B**n + a0 |
| * b = b1 * B**n + b0 |
| * |
| * Then, a * b => |
| a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0 |
| * |
| * Note that a1b1 and a0b0 are used twice and only need to be |
| * computed once. So in total three half size (half # of |
| * digit) multiplications are performed, a0b0, a1b1 and |
| * (a1-b1)(a0-b0) |
| * |
| * Note that a multiplication of half the digits requires |
| * 1/4th the number of single precision multiplications so in |
| * total after one call 25% of the single precision multiplications |
| * are saved. Note also that the call to mp_mul can end up back |
| * in this function if the a0, a1, b0, or b1 are above the threshold. |
| * This is known as divide-and-conquer and leads to the famous |
| * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than |
| * the standard O(N**2) that the baseline/comba methods use. |
| * Generally though the overhead of this method doesn't pay off |
| * until a certain size (N ~ 80) is reached. |
| */ |
| int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int x0, x1, y0, y1, t1, x0y0, x1y1; |
| int B, err; |
| |
| /* default the return code to an error */ |
| err = MP_MEM; |
| |
| /* min # of digits */ |
| B = MIN (a->used, b->used); |
| |
| /* now divide in two */ |
| B = B >> 1; |
| |
| /* init copy all the temps */ |
| if (mp_init_size (&x0, B) != MP_OKAY) |
| goto ERR; |
| if (mp_init_size (&x1, a->used - B) != MP_OKAY) |
| goto X0; |
| if (mp_init_size (&y0, B) != MP_OKAY) |
| goto X1; |
| if (mp_init_size (&y1, b->used - B) != MP_OKAY) |
| goto Y0; |
| |
| /* init temps */ |
| if (mp_init_size (&t1, B * 2) != MP_OKAY) |
| goto Y1; |
| if (mp_init_size (&x0y0, B * 2) != MP_OKAY) |
| goto T1; |
| if (mp_init_size (&x1y1, B * 2) != MP_OKAY) |
| goto X0Y0; |
| |
| /* now shift the digits */ |
| x0.used = y0.used = B; |
| x1.used = a->used - B; |
| y1.used = b->used - B; |
| |
| { |
| register int x; |
| register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; |
| |
| /* we copy the digits directly instead of using higher level functions |
| * since we also need to shift the digits |
| */ |
| tmpa = a->dp; |
| tmpb = b->dp; |
| |
| tmpx = x0.dp; |
| tmpy = y0.dp; |
| for (x = 0; x < B; x++) { |
| *tmpx++ = *tmpa++; |
| *tmpy++ = *tmpb++; |
| } |
| |
| tmpx = x1.dp; |
| for (x = B; x < a->used; x++) { |
| *tmpx++ = *tmpa++; |
| } |
| |
| tmpy = y1.dp; |
| for (x = B; x < b->used; x++) { |
| *tmpy++ = *tmpb++; |
| } |
| } |
| |
| /* only need to clamp the lower words since by definition the |
| * upper words x1/y1 must have a known number of digits |
| */ |
| mp_clamp (&x0); |
| mp_clamp (&y0); |
| |
| /* now calc the products x0y0 and x1y1 */ |
| /* after this x0 is no longer required, free temp [x0==t2]! */ |
| if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) |
| goto X1Y1; /* x0y0 = x0*y0 */ |
| if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) |
| goto X1Y1; /* x1y1 = x1*y1 */ |
| |
| /* now calc x1-x0 and y1-y0 */ |
| if (mp_sub (&x1, &x0, &t1) != MP_OKAY) |
| goto X1Y1; /* t1 = x1 - x0 */ |
| if (mp_sub (&y1, &y0, &x0) != MP_OKAY) |
| goto X1Y1; /* t2 = y1 - y0 */ |
| if (mp_mul (&t1, &x0, &t1) != MP_OKAY) |
| goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */ |
| |
| /* add x0y0 */ |
| if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) |
| goto X1Y1; /* t2 = x0y0 + x1y1 */ |
| if (mp_sub (&x0, &t1, &t1) != MP_OKAY) |
| goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */ |
| |
| /* shift by B */ |
| if (mp_lshd (&t1, B) != MP_OKAY) |
| goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ |
| if (mp_lshd (&x1y1, B * 2) != MP_OKAY) |
| goto X1Y1; /* x1y1 = x1y1 << 2*B */ |
| |
| if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) |
| goto X1Y1; /* t1 = x0y0 + t1 */ |
| if (mp_add (&t1, &x1y1, c) != MP_OKAY) |
| goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ |
| |
| /* Algorithm succeeded set the return code to MP_OKAY */ |
| err = MP_OKAY; |
| |
| X1Y1:mp_clear (&x1y1); |
| X0Y0:mp_clear (&x0y0); |
| T1:mp_clear (&t1); |
| Y1:mp_clear (&y1); |
| Y0:mp_clear (&y0); |
| X1:mp_clear (&x1); |
| X0:mp_clear (&x0); |
| ERR: |
| return err; |
| } |
| |
| /* Karatsuba squaring, computes b = a*a using three |
| * half size squarings |
| * |
| * See comments of karatsuba_mul for details. It |
| * is essentially the same algorithm but merely |
| * tuned to perform recursive squarings. |
| */ |
| int mp_karatsuba_sqr (mp_int * a, mp_int * b) |
| { |
| mp_int x0, x1, t1, t2, x0x0, x1x1; |
| int B, err; |
| |
| err = MP_MEM; |
| |
| /* min # of digits */ |
| B = a->used; |
| |
| /* now divide in two */ |
| B = B >> 1; |
| |
| /* init copy all the temps */ |
| if (mp_init_size (&x0, B) != MP_OKAY) |
| goto ERR; |
| if (mp_init_size (&x1, a->used - B) != MP_OKAY) |
| goto X0; |
| |
| /* init temps */ |
| if (mp_init_size (&t1, a->used * 2) != MP_OKAY) |
| goto X1; |
| if (mp_init_size (&t2, a->used * 2) != MP_OKAY) |
| goto T1; |
| if (mp_init_size (&x0x0, B * 2) != MP_OKAY) |
| goto T2; |
| if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY) |
| goto X0X0; |
| |
| { |
| register int x; |
| register mp_digit *dst, *src; |
| |
| src = a->dp; |
| |
| /* now shift the digits */ |
| dst = x0.dp; |
| for (x = 0; x < B; x++) { |
| *dst++ = *src++; |
| } |
| |
| dst = x1.dp; |
| for (x = B; x < a->used; x++) { |
| *dst++ = *src++; |
| } |
| } |
| |
| x0.used = B; |
| x1.used = a->used - B; |
| |
| mp_clamp (&x0); |
| |
| /* now calc the products x0*x0 and x1*x1 */ |
| if (mp_sqr (&x0, &x0x0) != MP_OKAY) |
| goto X1X1; /* x0x0 = x0*x0 */ |
| if (mp_sqr (&x1, &x1x1) != MP_OKAY) |
| goto X1X1; /* x1x1 = x1*x1 */ |
| |
| /* now calc (x1-x0)**2 */ |
| if (mp_sub (&x1, &x0, &t1) != MP_OKAY) |
| goto X1X1; /* t1 = x1 - x0 */ |
| if (mp_sqr (&t1, &t1) != MP_OKAY) |
| goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ |
| |
| /* add x0y0 */ |
| if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY) |
| goto X1X1; /* t2 = x0x0 + x1x1 */ |
| if (mp_sub (&t2, &t1, &t1) != MP_OKAY) |
| goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */ |
| |
| /* shift by B */ |
| if (mp_lshd (&t1, B) != MP_OKAY) |
| goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ |
| if (mp_lshd (&x1x1, B * 2) != MP_OKAY) |
| goto X1X1; /* x1x1 = x1x1 << 2*B */ |
| |
| if (mp_add (&x0x0, &t1, &t1) != MP_OKAY) |
| goto X1X1; /* t1 = x0x0 + t1 */ |
| if (mp_add (&t1, &x1x1, b) != MP_OKAY) |
| goto X1X1; /* t1 = x0x0 + t1 + x1x1 */ |
| |
| err = MP_OKAY; |
| |
| X1X1:mp_clear (&x1x1); |
| X0X0:mp_clear (&x0x0); |
| T2:mp_clear (&t2); |
| T1:mp_clear (&t1); |
| X1:mp_clear (&x1); |
| X0:mp_clear (&x0); |
| ERR: |
| return err; |
| } |
| |
| /* computes least common multiple as |a*b|/(a, b) */ |
| int mp_lcm (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int res; |
| mp_int t1, t2; |
| |
| |
| if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* t1 = get the GCD of the two inputs */ |
| if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) { |
| goto __T; |
| } |
| |
| /* divide the smallest by the GCD */ |
| if (mp_cmp_mag(a, b) == MP_LT) { |
| /* store quotient in t2 such that t2 * b is the LCM */ |
| if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { |
| goto __T; |
| } |
| res = mp_mul(b, &t2, c); |
| } else { |
| /* store quotient in t2 such that t2 * a is the LCM */ |
| if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { |
| goto __T; |
| } |
| res = mp_mul(a, &t2, c); |
| } |
| |
| /* fix the sign to positive */ |
| c->sign = MP_ZPOS; |
| |
| __T: |
| mp_clear_multi (&t1, &t2, NULL); |
| return res; |
| } |
| |
| /* shift left a certain amount of digits */ |
| int mp_lshd (mp_int * a, int b) |
| { |
| int x, res; |
| |
| /* if its less than zero return */ |
| if (b <= 0) { |
| return MP_OKAY; |
| } |
| |
| /* grow to fit the new digits */ |
| if (a->alloc < a->used + b) { |
| if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| { |
| register mp_digit *top, *bottom; |
| |
| /* increment the used by the shift amount then copy upwards */ |
| a->used += b; |
| |
| /* top */ |
| top = a->dp + a->used - 1; |
| |
| /* base */ |
| bottom = a->dp + a->used - 1 - b; |
| |
| /* much like mp_rshd this is implemented using a sliding window |
| * except the window goes the otherway around. Copying from |
| * the bottom to the top. see bn_mp_rshd.c for more info. |
| */ |
| for (x = a->used - 1; x >= b; x--) { |
| *top-- = *bottom--; |
| } |
| |
| /* zero the lower digits */ |
| top = a->dp; |
| for (x = 0; x < b; x++) { |
| *top++ = 0; |
| } |
| } |
| return MP_OKAY; |
| } |
| |
| /* c = a mod b, 0 <= c < b */ |
| int |
| mp_mod (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int t; |
| int res; |
| |
| if ((res = mp_init (&t)) != MP_OKAY) { |
| return res; |
| } |
| |
| if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| |
| if (t.sign != b->sign) { |
| res = mp_add (b, &t, c); |
| } else { |
| res = MP_OKAY; |
| mp_exch (&t, c); |
| } |
| |
| mp_clear (&t); |
| return res; |
| } |
| |
| /* calc a value mod 2**b */ |
| int |
| mp_mod_2d (mp_int * a, int b, mp_int * c) |
| { |
| int x, res; |
| |
| /* if b is <= 0 then zero the int */ |
| if (b <= 0) { |
| mp_zero (c); |
| return MP_OKAY; |
| } |
| |
| /* if the modulus is larger than the value than return */ |
| if (b > (int) (a->used * DIGIT_BIT)) { |
| res = mp_copy (a, c); |
| return res; |
| } |
| |
| /* copy */ |
| if ((res = mp_copy (a, c)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* zero digits above the last digit of the modulus */ |
| for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { |
| c->dp[x] = 0; |
| } |
| /* clear the digit that is not completely outside/inside the modulus */ |
| c->dp[b / DIGIT_BIT] &= |
| (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| int |
| mp_mod_d (mp_int * a, mp_digit b, mp_digit * c) |
| { |
| return mp_div_d(a, b, NULL, c); |
| } |
| |
| /* |
| * shifts with subtractions when the result is greater than b. |
| * |
| * The method is slightly modified to shift B unconditionally up to just under |
| * the leading bit of b. This saves a lot of multiple precision shifting. |
| */ |
| int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) |
| { |
| int x, bits, res; |
| |
| /* how many bits of last digit does b use */ |
| bits = mp_count_bits (b) % DIGIT_BIT; |
| |
| |
| if (b->used > 1) { |
| if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { |
| return res; |
| } |
| } else { |
| mp_set(a, 1); |
| bits = 1; |
| } |
| |
| |
| /* now compute C = A * B mod b */ |
| for (x = bits - 1; x < (int)DIGIT_BIT; x++) { |
| if ((res = mp_mul_2 (a, a)) != MP_OKAY) { |
| return res; |
| } |
| if (mp_cmp_mag (a, b) != MP_LT) { |
| if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { |
| return res; |
| } |
| } |
| } |
| |
| return MP_OKAY; |
| } |
| |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction */ |
| int |
| mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) |
| { |
| int ix, res, digs; |
| mp_digit mu; |
| |
| /* can the fast reduction [comba] method be used? |
| * |
| * Note that unlike in mul you're safely allowed *less* |
| * than the available columns [255 per default] since carries |
| * are fixed up in the inner loop. |
| */ |
| digs = n->used * 2 + 1; |
| if ((digs < MP_WARRAY) && |
| n->used < |
| (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| return fast_mp_montgomery_reduce (x, n, rho); |
| } |
| |
| /* grow the input as required */ |
| if (x->alloc < digs) { |
| if ((res = mp_grow (x, digs)) != MP_OKAY) { |
| return res; |
| } |
| } |
| x->used = digs; |
| |
| for (ix = 0; ix < n->used; ix++) { |
| /* mu = ai * rho mod b |
| * |
| * The value of rho must be precalculated via |
| * montgomery_setup() such that |
| * it equals -1/n0 mod b this allows the |
| * following inner loop to reduce the |
| * input one digit at a time |
| */ |
| mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); |
| |
| /* a = a + mu * m * b**i */ |
| { |
| register int iy; |
| register mp_digit *tmpn, *tmpx, u; |
| register mp_word r; |
| |
| /* alias for digits of the modulus */ |
| tmpn = n->dp; |
| |
| /* alias for the digits of x [the input] */ |
| tmpx = x->dp + ix; |
| |
| /* set the carry to zero */ |
| u = 0; |
| |
| /* Multiply and add in place */ |
| for (iy = 0; iy < n->used; iy++) { |
| /* compute product and sum */ |
| r = ((mp_word)mu) * ((mp_word)*tmpn++) + |
| ((mp_word) u) + ((mp_word) * tmpx); |
| |
| /* get carry */ |
| u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| |
| /* fix digit */ |
| *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); |
| } |
| /* At this point the ix'th digit of x should be zero */ |
| |
| |
| /* propagate carries upwards as required*/ |
| while (u) { |
| *tmpx += u; |
| u = *tmpx >> DIGIT_BIT; |
| *tmpx++ &= MP_MASK; |
| } |
| } |
| } |
| |
| /* at this point the n.used'th least |
| * significant digits of x are all zero |
| * which means we can shift x to the |
| * right by n.used digits and the |
| * residue is unchanged. |
| */ |
| |
| /* x = x/b**n.used */ |
| mp_clamp(x); |
| mp_rshd (x, n->used); |
| |
| /* if x >= n then x = x - n */ |
| if (mp_cmp_mag (x, n) != MP_LT) { |
| return s_mp_sub (x, n, x); |
| } |
| |
| return MP_OKAY; |
| } |
| |
| /* setups the montgomery reduction stuff */ |
| int |
| mp_montgomery_setup (mp_int * n, mp_digit * rho) |
| { |
| mp_digit x, b; |
| |
| /* fast inversion mod 2**k |
| * |
| * Based on the fact that |
| * |
| * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) |
| * => 2*X*A - X*X*A*A = 1 |
| * => 2*(1) - (1) = 1 |
| */ |
| b = n->dp[0]; |
| |
| if ((b & 1) == 0) { |
| return MP_VAL; |
| } |
| |
| x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ |
| x *= 2 - b * x; /* here x*a==1 mod 2**8 */ |
| x *= 2 - b * x; /* here x*a==1 mod 2**16 */ |
| x *= 2 - b * x; /* here x*a==1 mod 2**32 */ |
| |
| /* rho = -1/m mod b */ |
| *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; |
| |
| return MP_OKAY; |
| } |
| |
| /* high level multiplication (handles sign) */ |
| int mp_mul (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int res, neg; |
| neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
| |
| /* use Karatsuba? */ |
| if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { |
| res = mp_karatsuba_mul (a, b, c); |
| } else |
| { |
| /* can we use the fast multiplier? |
| * |
| * The fast multiplier can be used if the output will |
| * have less than MP_WARRAY digits and the number of |
| * digits won't affect carry propagation |
| */ |
| int digs = a->used + b->used + 1; |
| |
| if ((digs < MP_WARRAY) && |
| MIN(a->used, b->used) <= |
| (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| res = fast_s_mp_mul_digs (a, b, c, digs); |
| } else |
| res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ |
| } |
| c->sign = (c->used > 0) ? neg : MP_ZPOS; |
| return res; |
| } |
| |
| /* b = a*2 */ |
| int mp_mul_2(mp_int * a, mp_int * b) |
| { |
| int x, res, oldused; |
| |
| /* grow to accommodate result */ |
| if (b->alloc < a->used + 1) { |
| if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| oldused = b->used; |
| b->used = a->used; |
| |
| { |
| register mp_digit r, rr, *tmpa, *tmpb; |
| |
| /* alias for source */ |
| tmpa = a->dp; |
| |
| /* alias for dest */ |
| tmpb = b->dp; |
| |
| /* carry */ |
| r = 0; |
| for (x = 0; x < a->used; x++) { |
| |
| /* get what will be the *next* carry bit from the |
| * MSB of the current digit |
| */ |
| rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); |
| |
| /* now shift up this digit, add in the carry [from the previous] */ |
| *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; |
| |
| /* copy the carry that would be from the source |
| * digit into the next iteration |
| */ |
| r = rr; |
| } |
| |
| /* new leading digit? */ |
| if (r != 0) { |
| /* add a MSB which is always 1 at this point */ |
| *tmpb = 1; |
| ++(b->used); |
| } |
| |
| /* now zero any excess digits on the destination |
| * that we didn't write to |
| */ |
| tmpb = b->dp + b->used; |
| for (x = b->used; x < oldused; x++) { |
| *tmpb++ = 0; |
| } |
| } |
| b->sign = a->sign; |
| return MP_OKAY; |
| } |
| |
| /* shift left by a certain bit count */ |
| int mp_mul_2d (mp_int * a, int b, mp_int * c) |
| { |
| mp_digit d; |
| int res; |
| |
| /* copy */ |
| if (a != c) { |
| if ((res = mp_copy (a, c)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { |
| if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* shift by as many digits in the bit count */ |
| if (b >= (int)DIGIT_BIT) { |
| if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* shift any bit count < DIGIT_BIT */ |
| d = (mp_digit) (b % DIGIT_BIT); |
| if (d != 0) { |
| register mp_digit *tmpc, shift, mask, r, rr; |
| register int x; |
| |
| /* bitmask for carries */ |
| mask = (((mp_digit)1) << d) - 1; |
| |
| /* shift for msbs */ |
| shift = DIGIT_BIT - d; |
| |
| /* alias */ |
| tmpc = c->dp; |
| |
| /* carry */ |
| r = 0; |
| for (x = 0; x < c->used; x++) { |
| /* get the higher bits of the current word */ |
| rr = (*tmpc >> shift) & mask; |
| |
| /* shift the current word and OR in the carry */ |
| *tmpc = ((*tmpc << d) | r) & MP_MASK; |
| ++tmpc; |
| |
| /* set the carry to the carry bits of the current word */ |
| r = rr; |
| } |
| |
| /* set final carry */ |
| if (r != 0) { |
| c->dp[(c->used)++] = r; |
| } |
| } |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| /* multiply by a digit */ |
| int |
| mp_mul_d (mp_int * a, mp_digit b, mp_int * c) |
| { |
| mp_digit u, *tmpa, *tmpc; |
| mp_word r; |
| int ix, res, olduse; |
| |
| /* make sure c is big enough to hold a*b */ |
| if (c->alloc < a->used + 1) { |
| if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* get the original destinations used count */ |
| olduse = c->used; |
| |
| /* set the sign */ |
| c->sign = a->sign; |
| |
| /* alias for a->dp [source] */ |
| tmpa = a->dp; |
| |
| /* alias for c->dp [dest] */ |
| tmpc = c->dp; |
| |
| /* zero carry */ |
| u = 0; |
| |
| /* compute columns */ |
| for (ix = 0; ix < a->used; ix++) { |
| /* compute product and carry sum for this term */ |
| r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); |
| |
| /* mask off higher bits to get a single digit */ |
| *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* send carry into next iteration */ |
| u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
| } |
| |
| /* store final carry [if any] */ |
| *tmpc++ = u; |
| |
| /* now zero digits above the top */ |
| while (ix++ < olduse) { |
| *tmpc++ = 0; |
| } |
| |
| /* set used count */ |
| c->used = a->used + 1; |
| mp_clamp(c); |
| |
| return MP_OKAY; |
| } |
| |
| /* d = a * b (mod c) */ |
| int |
| mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| { |
| int res; |
| mp_int t; |
| |
| if ((res = mp_init (&t)) != MP_OKAY) { |
| return res; |
| } |
| |
| if ((res = mp_mul (a, b, &t)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| res = mp_mod (&t, c, d); |
| mp_clear (&t); |
| return res; |
| } |
| |
| /* determines if an integers is divisible by one |
| * of the first PRIME_SIZE primes or not |
| * |
| * sets result to 0 if not, 1 if yes |
| */ |
| int mp_prime_is_divisible (mp_int * a, int *result) |
| { |
| int err, ix; |
| mp_digit res; |
| |
| /* default to not */ |
| *result = MP_NO; |
| |
| for (ix = 0; ix < PRIME_SIZE; ix++) { |
| /* what is a mod __prime_tab[ix] */ |
| if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) { |
| return err; |
| } |
| |
| /* is the residue zero? */ |
| if (res == 0) { |
| *result = MP_YES; |
| return MP_OKAY; |
| } |
| } |
| |
| return MP_OKAY; |
| } |
| |
| /* performs a variable number of rounds of Miller-Rabin |
| * |
| * Probability of error after t rounds is no more than |
| |
| * |
| * Sets result to 1 if probably prime, 0 otherwise |
| */ |
| int mp_prime_is_prime (mp_int * a, int t, int *result) |
| { |
| mp_int b; |
| int ix, err, res; |
| |
| /* default to no */ |
| *result = MP_NO; |
| |
| /* valid value of t? */ |
| if (t <= 0 || t > PRIME_SIZE) { |
| return MP_VAL; |
| } |
| |
| /* is the input equal to one of the primes in the table? */ |
| for (ix = 0; ix < PRIME_SIZE; ix++) { |
| if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) { |
| *result = 1; |
| return MP_OKAY; |
| } |
| } |
| |
| /* first perform trial division */ |
| if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { |
| return err; |
| } |
| |
| /* return if it was trivially divisible */ |
| if (res == MP_YES) { |
| return MP_OKAY; |
| } |
| |
| /* now perform the miller-rabin rounds */ |
| if ((err = mp_init (&b)) != MP_OKAY) { |
| return err; |
| } |
| |
| for (ix = 0; ix < t; ix++) { |
| /* set the prime */ |
| mp_set (&b, __prime_tab[ix]); |
| |
| if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { |
| goto __B; |
| } |
| |
| if (res == MP_NO) { |
| goto __B; |
| } |
| } |
| |
| /* passed the test */ |
| *result = MP_YES; |
| __B:mp_clear (&b); |
| return err; |
| } |
| |
| /* Miller-Rabin test of "a" to the base of "b" as described in |
| * HAC pp. 139 Algorithm 4.24 |
| * |
| * Sets result to 0 if definitely composite or 1 if probably prime. |
| * Randomly the chance of error is no more than 1/4 and often |
| * very much lower. |
| */ |
| int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) |
| { |
| mp_int n1, y, r; |
| int s, j, err; |
| |
| /* default */ |
| *result = MP_NO; |
| |
| /* ensure b > 1 */ |
| if (mp_cmp_d(b, 1) != MP_GT) { |
| return MP_VAL; |
| } |
| |
| /* get n1 = a - 1 */ |
| if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { |
| return err; |
| } |
| if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { |
| goto __N1; |
| } |
| |
| /* set 2**s * r = n1 */ |
| if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { |
| goto __N1; |
| } |
| |
| /* count the number of least significant bits |
| * which are zero |
| */ |
| s = mp_cnt_lsb(&r); |
| |
| /* now divide n - 1 by 2**s */ |
| if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { |
| goto __R; |
| } |
| |
| /* compute y = b**r mod a */ |
| if ((err = mp_init (&y)) != MP_OKAY) { |
| goto __R; |
| } |
| if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { |
| goto __Y; |
| } |
| |
| /* if y != 1 and y != n1 do */ |
| if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { |
| j = 1; |
| /* while j <= s-1 and y != n1 */ |
| while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { |
| if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { |
| goto __Y; |
| } |
| |
| /* if y == 1 then composite */ |
| if (mp_cmp_d (&y, 1) == MP_EQ) { |
| goto __Y; |
| } |
| |
| ++j; |
| } |
| |
| /* if y != n1 then composite */ |
| if (mp_cmp (&y, &n1) != MP_EQ) { |
| goto __Y; |
| } |
| } |
| |
| /* probably prime now */ |
| *result = MP_YES; |
| __Y:mp_clear (&y); |
| __R:mp_clear (&r); |
| __N1:mp_clear (&n1); |
| return err; |
| } |
| |
| static const struct { |
| int k, t; |
| } sizes[] = { |
| { 128, 28 }, |
| { 256, 16 }, |
| { 384, 10 }, |
| { 512, 7 }, |
| { 640, 6 }, |
| { 768, 5 }, |
| { 896, 4 }, |
| { 1024, 4 } |
| }; |
| |
| /* returns # of RM trials required for a given bit size */ |
| int mp_prime_rabin_miller_trials(int size) |
| { |
| int x; |
| |
| for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { |
| if (sizes[x].k == size) { |
| return sizes[x].t; |
| } else if (sizes[x].k > size) { |
| return (x == 0) ? sizes[0].t : sizes[x - 1].t; |
| } |
| } |
| return sizes[x-1].t + 1; |
| } |
| |
| /* makes a truly random prime of a given size (bits), |
| * |
| * Flags are as follows: |
| * |
| * LTM_PRIME_BBS - make prime congruent to 3 mod 4 |
| * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) |
| * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero |
| * LTM_PRIME_2MSB_ON - make the 2nd highest bit one |
| * |
| * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can |
| * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself |
| * so it can be NULL |
| * |
| */ |
| |
| /* This is possibly the mother of all prime generation functions, muahahahahaha! */ |
| int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat) |
| { |
| unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb; |
| int res, err, bsize, maskOR_msb_offset; |
| |
| /* sanity check the input */ |
| if (size <= 1 || t <= 0) { |
| return MP_VAL; |
| } |
| |
| /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */ |
| if (flags & LTM_PRIME_SAFE) { |
| flags |= LTM_PRIME_BBS; |
| } |
| |
| /* calc the byte size */ |
| bsize = (size>>3)+((size&7)?1:0); |
| |
| /* we need a buffer of bsize bytes */ |
| tmp = malloc(bsize); |
| if (tmp == NULL) { |
| return MP_MEM; |
| } |
| |
| /* calc the maskAND value for the MSbyte*/ |
| maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7))); |
| |
| /* calc the maskOR_msb */ |
| maskOR_msb = 0; |
| maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; |
| if (flags & LTM_PRIME_2MSB_ON) { |
| maskOR_msb |= 1 << ((size - 2) & 7); |
| } else if (flags & LTM_PRIME_2MSB_OFF) { |
| maskAND &= ~(1 << ((size - 2) & 7)); |
| } |
| |
| /* get the maskOR_lsb */ |
| maskOR_lsb = 0; |
| if (flags & LTM_PRIME_BBS) { |
| maskOR_lsb |= 3; |
| } |
| |
| do { |
| /* read the bytes */ |
| if (cb(tmp, bsize, dat) != bsize) { |
| err = MP_VAL; |
| goto error; |
| } |
| |
| /* work over the MSbyte */ |
| tmp[0] &= maskAND; |
| tmp[0] |= 1 << ((size - 1) & 7); |
| |
| /* mix in the maskORs */ |
| tmp[maskOR_msb_offset] |= maskOR_msb; |
| tmp[bsize-1] |= maskOR_lsb; |
| |
| /* read it in */ |
| if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; } |
| |
| /* is it prime? */ |
| if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } |
| if (res == MP_NO) { |
| continue; |
| } |
| |
| if (flags & LTM_PRIME_SAFE) { |
| /* see if (a-1)/2 is prime */ |
| if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; } |
| if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; } |
| |
| /* is it prime? */ |
| if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } |
| } |
| } while (res == MP_NO); |
| |
| if (flags & LTM_PRIME_SAFE) { |
| /* restore a to the original value */ |
| if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; } |
| if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; } |
| } |
| |
| err = MP_OKAY; |
| error: |
| free(tmp); |
| return err; |
| } |
| |
| /* reads an unsigned char array, assumes the msb is stored first [big endian] */ |
| int |
| mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c) |
| { |
| int res; |
| |
| /* make sure there are at least two digits */ |
| if (a->alloc < 2) { |
| if ((res = mp_grow(a, 2)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* zero the int */ |
| mp_zero (a); |
| |
| /* read the bytes in */ |
| while (c-- > 0) { |
| if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { |
| return res; |
| } |
| |
| a->dp[0] |= *b++; |
| a->used += 1; |
| } |
| mp_clamp (a); |
| return MP_OKAY; |
| } |
| |
| /* reduces x mod m, assumes 0 < x < m**2, mu is |
| * precomputed via mp_reduce_setup. |
| * From HAC pp.604 Algorithm 14.42 |
| */ |
| int |
| mp_reduce (mp_int * x, mp_int * m, mp_int * mu) |
| { |
| mp_int q; |
| int res, um = m->used; |
| |
| /* q = x */ |
| if ((res = mp_init_copy (&q, x)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* q1 = x / b**(k-1) */ |
| mp_rshd (&q, um - 1); |
| |
| /* according to HAC this optimization is ok */ |
| if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { |
| if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { |
| goto CLEANUP; |
| } |
| } else { |
| if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) { |
| goto CLEANUP; |
| } |
| } |
| |
| /* q3 = q2 / b**(k+1) */ |
| mp_rshd (&q, um + 1); |
| |
| /* x = x mod b**(k+1), quick (no division) */ |
| if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { |
| goto CLEANUP; |
| } |
| |
| /* q = q * m mod b**(k+1), quick (no division) */ |
| if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { |
| goto CLEANUP; |
| } |
| |
| /* x = x - q */ |
| if ((res = mp_sub (x, &q, x)) != MP_OKAY) { |
| goto CLEANUP; |
| } |
| |
| /* If x < 0, add b**(k+1) to it */ |
| if (mp_cmp_d (x, 0) == MP_LT) { |
| mp_set (&q, 1); |
| if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) |
| goto CLEANUP; |
| if ((res = mp_add (x, &q, x)) != MP_OKAY) |
| goto CLEANUP; |
| } |
| |
| /* Back off if it's too big */ |
| while (mp_cmp (x, m) != MP_LT) { |
| if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { |
| goto CLEANUP; |
| } |
| } |
| |
| CLEANUP: |
| mp_clear (&q); |
| |
| return res; |
| } |
| |
| /* reduces a modulo n where n is of the form 2**p - d */ |
| int |
| mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) |
| { |
| mp_int q; |
| int p, res; |
| |
| if ((res = mp_init(&q)) != MP_OKAY) { |
| return res; |
| } |
| |
| p = mp_count_bits(n); |
| top: |
| /* q = a/2**p, a = a mod 2**p */ |
| if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { |
| goto ERR; |
| } |
| |
| if (d != 1) { |
| /* q = q * d */ |
| if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { |
| goto ERR; |
| } |
| } |
| |
| /* a = a + q */ |
| if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { |
| goto ERR; |
| } |
| |
| if (mp_cmp_mag(a, n) != MP_LT) { |
| s_mp_sub(a, n, a); |
| goto top; |
| } |
| |
| ERR: |
| mp_clear(&q); |
| return res; |
| } |
| |
| /* determines the setup value */ |
| int |
| mp_reduce_2k_setup(mp_int *a, mp_digit *d) |
| { |
| int res, p; |
| mp_int tmp; |
| |
| if ((res = mp_init(&tmp)) != MP_OKAY) { |
| return res; |
| } |
| |
| p = mp_count_bits(a); |
| if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { |
| mp_clear(&tmp); |
| return res; |
| } |
| |
| if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { |
| mp_clear(&tmp); |
| return res; |
| } |
| |
| *d = tmp.dp[0]; |
| mp_clear(&tmp); |
| return MP_OKAY; |
| } |
| |
| /* pre-calculate the value required for Barrett reduction |
| * For a given modulus "b" it calulates the value required in "a" |
| */ |
| int mp_reduce_setup (mp_int * a, mp_int * b) |
| { |
| int res; |
| |
| if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { |
| return res; |
| } |
| return mp_div (a, b, a, NULL); |
| } |
| |
| /* shift right a certain amount of digits */ |
| void mp_rshd (mp_int * a, int b) |
| { |
| int x; |
| |
| /* if b <= 0 then ignore it */ |
| if (b <= 0) { |
| return; |
| } |
| |
| /* if b > used then simply zero it and return */ |
| if (a->used <= b) { |
| mp_zero (a); |
| return; |
| } |
| |
| { |
| register mp_digit *bottom, *top; |
| |
| /* shift the digits down */ |
| |
| /* bottom */ |
| bottom = a->dp; |
| |
| /* top [offset into digits] */ |
| top = a->dp + b; |
| |
| /* this is implemented as a sliding window where |
| * the window is b-digits long and digits from |
| * the top of the window are copied to the bottom |
| * |
| * e.g. |
| |
| b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> |
| /\ | ----> |
| \-------------------/ ----> |
| */ |
| for (x = 0; x < (a->used - b); x++) { |
| *bottom++ = *top++; |
| } |
| |
| /* zero the top digits */ |
| for (; x < a->used; x++) { |
| *bottom++ = 0; |
| } |
| } |
| |
| /* remove excess digits */ |
| a->used -= b; |
| } |
| |
| /* set to a digit */ |
| void mp_set (mp_int * a, mp_digit b) |
| { |
| mp_zero (a); |
| a->dp[0] = b & MP_MASK; |
| a->used = (a->dp[0] != 0) ? 1 : 0; |
| } |
| |
| /* set a 32-bit const */ |
| int mp_set_int (mp_int * a, unsigned long b) |
| { |
| int x, res; |
| |
| mp_zero (a); |
| |
| /* set four bits at a time */ |
| for (x = 0; x < 8; x++) { |
| /* shift the number up four bits */ |
| if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* OR in the top four bits of the source */ |
| a->dp[0] |= (b >> 28) & 15; |
| |
| /* shift the source up to the next four bits */ |
| b <<= 4; |
| |
| /* ensure that digits are not clamped off */ |
| a->used += 1; |
| } |
| mp_clamp (a); |
| return MP_OKAY; |
| } |
| |
| /* shrink a bignum */ |
| int mp_shrink (mp_int * a) |
| { |
| mp_digit *tmp; |
| if (a->alloc != a->used && a->used > 0) { |
| if ((tmp = realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) { |
| return MP_MEM; |
| } |
| a->dp = tmp; |
| a->alloc = a->used; |
| } |
| return MP_OKAY; |
| } |
| |
| /* get the size for an signed equivalent */ |
| int mp_signed_bin_size (mp_int * a) |
| { |
| return 1 + mp_unsigned_bin_size (a); |
| } |
| |
| /* computes b = a*a */ |
| int |
| mp_sqr (mp_int * a, mp_int * b) |
| { |
| int res; |
| |
| if (a->used >= KARATSUBA_SQR_CUTOFF) { |
| res = mp_karatsuba_sqr (a, b); |
| } else |
| { |
| /* can we use the fast comba multiplier? */ |
| if ((a->used * 2 + 1) < MP_WARRAY && |
| a->used < |
| (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { |
| res = fast_s_mp_sqr (a, b); |
| } else |
| res = s_mp_sqr (a, b); |
| } |
| b->sign = MP_ZPOS; |
| return res; |
| } |
| |
| /* c = a * a (mod b) */ |
| int |
| mp_sqrmod (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int res; |
| mp_int t; |
| |
| if ((res = mp_init (&t)) != MP_OKAY) { |
| return res; |
| } |
| |
| if ((res = mp_sqr (a, &t)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| res = mp_mod (&t, b, c); |
| mp_clear (&t); |
| return res; |
| } |
| |
| /* high level subtraction (handles signs) */ |
| int |
| mp_sub (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int sa, sb, res; |
| |
| sa = a->sign; |
| sb = b->sign; |
| |
| if (sa != sb) { |
| /* subtract a negative from a positive, OR */ |
| /* subtract a positive from a negative. */ |
| /* In either case, ADD their magnitudes, */ |
| /* and use the sign of the first number. */ |
| c->sign = sa; |
| res = s_mp_add (a, b, c); |
| } else { |
| /* subtract a positive from a positive, OR */ |
| /* subtract a negative from a negative. */ |
| /* First, take the difference between their */ |
| /* magnitudes, then... */ |
| if (mp_cmp_mag (a, b) != MP_LT) { |
| /* Copy the sign from the first */ |
| c->sign = sa; |
| /* The first has a larger or equal magnitude */ |
| res = s_mp_sub (a, b, c); |
| } else { |
| /* The result has the *opposite* sign from */ |
| /* the first number. */ |
| c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; |
| /* The second has a larger magnitude */ |
| res = s_mp_sub (b, a, c); |
| } |
| } |
| return res; |
| } |
| |
| /* single digit subtraction */ |
| int |
| mp_sub_d (mp_int * a, mp_digit b, mp_int * c) |
| { |
| mp_digit *tmpa, *tmpc, mu; |
| int res, ix, oldused; |
| |
| /* grow c as required */ |
| if (c->alloc < a->used + 1) { |
| if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* if a is negative just do an unsigned |
| * addition [with fudged signs] |
| */ |
| if (a->sign == MP_NEG) { |
| a->sign = MP_ZPOS; |
| res = mp_add_d(a, b, c); |
| a->sign = c->sign = MP_NEG; |
| return res; |
| } |
| |
| /* setup regs */ |
| oldused = c->used; |
| tmpa = a->dp; |
| tmpc = c->dp; |
| |
| /* if a <= b simply fix the single digit */ |
| if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) { |
| if (a->used == 1) { |
| *tmpc++ = b - *tmpa; |
| } else { |
| *tmpc++ = b; |
| } |
| ix = 1; |
| |
| /* negative/1digit */ |
| c->sign = MP_NEG; |
| c->used = 1; |
| } else { |
| /* positive/size */ |
| c->sign = MP_ZPOS; |
| c->used = a->used; |
| |
| /* subtract first digit */ |
| *tmpc = *tmpa++ - b; |
| mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); |
| *tmpc++ &= MP_MASK; |
| |
| /* handle rest of the digits */ |
| for (ix = 1; ix < a->used; ix++) { |
| *tmpc = *tmpa++ - mu; |
| mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); |
| *tmpc++ &= MP_MASK; |
| } |
| } |
| |
| /* zero excess digits */ |
| while (ix++ < oldused) { |
| *tmpc++ = 0; |
| } |
| mp_clamp(c); |
| return MP_OKAY; |
| } |
| |
| /* store in unsigned [big endian] format */ |
| int |
| mp_to_unsigned_bin (mp_int * a, unsigned char *b) |
| { |
| int x, res; |
| mp_int t; |
| |
| if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
| return res; |
| } |
| |
| x = 0; |
| while (mp_iszero (&t) == 0) { |
| b[x++] = (unsigned char) (t.dp[0] & 255); |
| if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| } |
| bn_reverse (b, x); |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| /* get the size for an unsigned equivalent */ |
| int |
| mp_unsigned_bin_size (mp_int * a) |
| { |
| int size = mp_count_bits (a); |
| return (size / 8 + ((size & 7) != 0 ? 1 : 0)); |
| } |
| |
| /* set to zero */ |
| void |
| mp_zero (mp_int * a) |
| { |
| a->sign = MP_ZPOS; |
| a->used = 0; |
| memset (a->dp, 0, sizeof (mp_digit) * a->alloc); |
| } |
| |
| const mp_digit __prime_tab[] = { |
| 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, |
| 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, |
| 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, |
| 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083, |
| 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, |
| 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, |
| 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, |
| 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, |
| |
| 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, |
| 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, |
| 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, |
| 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, |
| 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, |
| 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, |
| 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, |
| 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, |
| |
| 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, |
| 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, |
| 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, |
| 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, |
| 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, |
| 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, |
| 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, |
| 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, |
| |
| 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, |
| 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, |
| 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, |
| 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, |
| 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, |
| 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, |
| 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, |
| 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 |
| }; |
| |
| /* reverse an array, used for radix code */ |
| void |
| bn_reverse (unsigned char *s, int len) |
| { |
| int ix, iy; |
| unsigned char t; |
| |
| ix = 0; |
| iy = len - 1; |
| while (ix < iy) { |
| t = s[ix]; |
| s[ix] = s[iy]; |
| s[iy] = t; |
| ++ix; |
| --iy; |
| } |
| } |
| |
| /* low level addition, based on HAC pp.594, Algorithm 14.7 */ |
| int |
| s_mp_add (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int *x; |
| int olduse, res, min, max; |
| |
| /* find sizes, we let |a| <= |b| which means we have to sort |
| * them. "x" will point to the input with the most digits |
| */ |
| if (a->used > b->used) { |
| min = b->used; |
| max = a->used; |
| x = a; |
| } else { |
| min = a->used; |
| max = b->used; |
| x = b; |
| } |
| |
| /* init result */ |
| if (c->alloc < max + 1) { |
| if ((res = mp_grow (c, max + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* get old used digit count and set new one */ |
| olduse = c->used; |
| c->used = max + 1; |
| |
| { |
| register mp_digit u, *tmpa, *tmpb, *tmpc; |
| register int i; |
| |
| /* alias for digit pointers */ |
| |
| /* first input */ |
| tmpa = a->dp; |
| |
| /* second input */ |
| tmpb = b->dp; |
| |
| /* destination */ |
| tmpc = c->dp; |
| |
| /* zero the carry */ |
| u = 0; |
| for (i = 0; i < min; i++) { |
| /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ |
| *tmpc = *tmpa++ + *tmpb++ + u; |
| |
| /* U = carry bit of T[i] */ |
| u = *tmpc >> ((mp_digit)DIGIT_BIT); |
| |
| /* take away carry bit from T[i] */ |
| *tmpc++ &= MP_MASK; |
| } |
| |
| /* now copy higher words if any, that is in A+B |
| * if A or B has more digits add those in |
| */ |
| if (min != max) { |
| for (; i < max; i++) { |
| /* T[i] = X[i] + U */ |
| *tmpc = x->dp[i] + u; |
| |
| /* U = carry bit of T[i] */ |
| u = *tmpc >> ((mp_digit)DIGIT_BIT); |
| |
| /* take away carry bit from T[i] */ |
| *tmpc++ &= MP_MASK; |
| } |
| } |
| |
| /* add carry */ |
| *tmpc++ = u; |
| |
| /* clear digits above oldused */ |
| for (i = c->used; i < olduse; i++) { |
| *tmpc++ = 0; |
| } |
| } |
| |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) |
| { |
| mp_int M[256], res, mu; |
| mp_digit buf; |
| int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; |
| |
| /* find window size */ |
| x = mp_count_bits (X); |
| if (x <= 7) { |
| winsize = 2; |
| } else if (x <= 36) { |
| winsize = 3; |
| } else if (x <= 140) { |
| winsize = 4; |
| } else if (x <= 450) { |
| winsize = 5; |
| } else if (x <= 1303) { |
| winsize = 6; |
| } else if (x <= 3529) { |
| winsize = 7; |
| } else { |
| winsize = 8; |
| } |
| |
| /* init M array */ |
| /* init first cell */ |
| if ((err = mp_init(&M[1])) != MP_OKAY) { |
| return err; |
| } |
| |
| /* now init the second half of the array */ |
| for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| if ((err = mp_init(&M[x])) != MP_OKAY) { |
| for (y = 1<<(winsize-1); y < x; y++) { |
| mp_clear (&M[y]); |
| } |
| mp_clear(&M[1]); |
| return err; |
| } |
| } |
| |
| /* create mu, used for Barrett reduction */ |
| if ((err = mp_init (&mu)) != MP_OKAY) { |
| goto __M; |
| } |
| if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { |
| goto __MU; |
| } |
| |
| /* create M table |
| * |
| * The M table contains powers of the base, |
| * e.g. M[x] = G**x mod P |
| * |
| * The first half of the table is not |
| * computed though accept for M[0] and M[1] |
| */ |
| if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { |
| goto __MU; |
| } |
| |
| /* compute the value at M[1<<(winsize-1)] by squaring |
| * M[1] (winsize-1) times |
| */ |
| if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { |
| goto __MU; |
| } |
| |
| for (x = 0; x < (winsize - 1); x++) { |
| if ((err = mp_sqr (&M[1 << (winsize - 1)], |
| &M[1 << (winsize - 1)])) != MP_OKAY) { |
| goto __MU; |
| } |
| if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { |
| goto __MU; |
| } |
| } |
| |
| /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) |
| * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) |
| */ |
| for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { |
| if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { |
| goto __MU; |
| } |
| if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { |
| goto __MU; |
| } |
| } |
| |
| /* setup result */ |
| if ((err = mp_init (&res)) != MP_OKAY) { |
| goto __MU; |
| } |
| mp_set (&res, 1); |
| |
| /* set initial mode and bit cnt */ |
| mode = 0; |
| bitcnt = 1; |
| buf = 0; |
| digidx = X->used - 1; |
| bitcpy = 0; |
| bitbuf = 0; |
| |
| for (;;) { |
| /* grab next digit as required */ |
| if (--bitcnt == 0) { |
| /* if digidx == -1 we are out of digits */ |
| if (digidx == -1) { |
| break; |
| } |
| /* read next digit and reset the bitcnt */ |
| buf = X->dp[digidx--]; |
| bitcnt = (int) DIGIT_BIT; |
| } |
| |
| /* grab the next msb from the exponent */ |
| y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; |
| buf <<= (mp_digit)1; |
| |
| /* if the bit is zero and mode == 0 then we ignore it |
| * These represent the leading zero bits before the first 1 bit |
| * in the exponent. Technically this opt is not required but it |
| * does lower the # of trivial squaring/reductions used |
| */ |
| if (mode == 0 && y == 0) { |
| continue; |
| } |
| |
| /* if the bit is zero and mode == 1 then we square */ |
| if (mode == 1 && y == 0) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
| goto __RES; |
| } |
| continue; |
| } |
| |
| /* else we add it to the window */ |
| bitbuf |= (y << (winsize - ++bitcpy)); |
| mode = 2; |
| |
| if (bitcpy == winsize) { |
| /* ok window is filled so square as required and multiply */ |
| /* square first */ |
| for (x = 0; x < winsize; x++) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
| goto __RES; |
| } |
| } |
| |
| /* then multiply */ |
| if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
| goto __RES; |
| } |
| |
| /* empty window and reset */ |
| bitcpy = 0; |
| bitbuf = 0; |
| mode = 1; |
| } |
| } |
| |
| /* if bits remain then square/multiply */ |
| if (mode == 2 && bitcpy > 0) { |
| /* square then multiply if the bit is set */ |
| for (x = 0; x < bitcpy; x++) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
| goto __RES; |
| } |
| |
| bitbuf <<= 1; |
| if ((bitbuf & (1 << winsize)) != 0) { |
| /* then multiply */ |
| if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { |
| goto __RES; |
| } |
| if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { |
| goto __RES; |
| } |
| } |
| } |
| } |
| |
| mp_exch (&res, Y); |
| err = MP_OKAY; |
| __RES:mp_clear (&res); |
| __MU:mp_clear (&mu); |
| __M: |
| mp_clear(&M[1]); |
| for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| mp_clear (&M[x]); |
| } |
| return err; |
| } |
| |
| /* multiplies |a| * |b| and only computes up to digs digits of result |
| * HAC pp. 595, Algorithm 14.12 Modified so you can control how |
| * many digits of output are created. |
| */ |
| int |
| s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| { |
| mp_int t; |
| int res, pa, pb, ix, iy; |
| mp_digit u; |
| mp_word r; |
| mp_digit tmpx, *tmpt, *tmpy; |
| |
| /* can we use the fast multiplier? */ |
| if (((digs) < MP_WARRAY) && |
| MIN (a->used, b->used) < |
| (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| return fast_s_mp_mul_digs (a, b, c, digs); |
| } |
| |
| if ((res = mp_init_size (&t, digs)) != MP_OKAY) { |
| return res; |
| } |
| t.used = digs; |
| |
| /* compute the digits of the product directly */ |
| pa = a->used; |
| for (ix = 0; ix < pa; ix++) { |
| /* set the carry to zero */ |
| u = 0; |
| |
| /* limit ourselves to making digs digits of output */ |
| pb = MIN (b->used, digs - ix); |
| |
| /* setup some aliases */ |
| /* copy of the digit from a used within the nested loop */ |
| tmpx = a->dp[ix]; |
| |
| /* an alias for the destination shifted ix places */ |
| tmpt = t.dp + ix; |
| |
| /* an alias for the digits of b */ |
| tmpy = b->dp; |
| |
| /* compute the columns of the output and propagate the carry */ |
| for (iy = 0; iy < pb; iy++) { |
| /* compute the column as a mp_word */ |
| r = ((mp_word)*tmpt) + |
| ((mp_word)tmpx) * ((mp_word)*tmpy++) + |
| ((mp_word) u); |
| |
| /* the new column is the lower part of the result */ |
| *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* get the carry word from the result */ |
| u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
| } |
| /* set carry if it is placed below digs */ |
| if (ix + iy < digs) { |
| *tmpt = u; |
| } |
| } |
| |
| mp_clamp (&t); |
| mp_exch (&t, c); |
| |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| /* multiplies |a| * |b| and does not compute the lower digs digits |
| * [meant to get the higher part of the product] |
| */ |
| int |
| s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| { |
| mp_int t; |
| int res, pa, pb, ix, iy; |
| mp_digit u; |
| mp_word r; |
| mp_digit tmpx, *tmpt, *tmpy; |
| |
| /* can we use the fast multiplier? */ |
| if (((a->used + b->used + 1) < MP_WARRAY) |
| && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| return fast_s_mp_mul_high_digs (a, b, c, digs); |
| } |
| |
| if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| t.used = a->used + b->used + 1; |
| |
| pa = a->used; |
| pb = b->used; |
| for (ix = 0; ix < pa; ix++) { |
| /* clear the carry */ |
| u = 0; |
| |
| /* left hand side of A[ix] * B[iy] */ |
| tmpx = a->dp[ix]; |
| |
| /* alias to the address of where the digits will be stored */ |
| tmpt = &(t.dp[digs]); |
| |
| /* alias for where to read the right hand side from */ |
| tmpy = b->dp + (digs - ix); |
| |
| for (iy = digs - ix; iy < pb; iy++) { |
| /* calculate the double precision result */ |
| r = ((mp_word)*tmpt) + |
| ((mp_word)tmpx) * ((mp_word)*tmpy++) + |
| ((mp_word) u); |
| |
| /* get the lower part */ |
| *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* carry the carry */ |
| u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
| } |
| *tmpt = u; |
| } |
| mp_clamp (&t); |
| mp_exch (&t, c); |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ |
| int |
| s_mp_sqr (mp_int * a, mp_int * b) |
| { |
| mp_int t; |
| int res, ix, iy, pa; |
| mp_word r; |
| mp_digit u, tmpx, *tmpt; |
| |
| pa = a->used; |
| if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* default used is maximum possible size */ |
| t.used = 2*pa + 1; |
| |
| for (ix = 0; ix < pa; ix++) { |
| /* first calculate the digit at 2*ix */ |
| /* calculate double precision result */ |
| r = ((mp_word) t.dp[2*ix]) + |
| ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); |
| |
| /* store lower part in result */ |
| t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* get the carry */ |
| u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| |
| /* left hand side of A[ix] * A[iy] */ |
| tmpx = a->dp[ix]; |
| |
| /* alias for where to store the results */ |
| tmpt = t.dp + (2*ix + 1); |
| |
| for (iy = ix + 1; iy < pa; iy++) { |
| /* first calculate the product */ |
| r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); |
| |
| /* now calculate the double precision result, note we use |
| * addition instead of *2 since it's easier to optimize |
| */ |
| r = ((mp_word) *tmpt) + r + r + ((mp_word) u); |
| |
| /* store lower part */ |
| *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* get carry */ |
| u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| } |
| /* propagate upwards */ |
| while (u != ((mp_digit) 0)) { |
| r = ((mp_word) *tmpt) + ((mp_word) u); |
| *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| } |
| } |
| |
| mp_clamp (&t); |
| mp_exch (&t, b); |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ |
| int |
| s_mp_sub (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int olduse, res, min, max; |
| |
| /* find sizes */ |
| min = b->used; |
| max = a->used; |
| |
| /* init result */ |
| if (c->alloc < max) { |
| if ((res = mp_grow (c, max)) != MP_OKAY) { |
| return res; |
| } |
| } |
| olduse = c->used; |
| c->used = max; |
| |
| { |
| register mp_digit u, *tmpa, *tmpb, *tmpc; |
| register int i; |
| |
| /* alias for digit pointers */ |
| tmpa = a->dp; |
| tmpb = b->dp; |
| tmpc = c->dp; |
| |
| /* set carry to zero */ |
| u = 0; |
| for (i = 0; i < min; i++) { |
| /* T[i] = A[i] - B[i] - U */ |
| *tmpc = *tmpa++ - *tmpb++ - u; |
| |
| /* U = carry bit of T[i] |
| * Note this saves performing an AND operation since |
| * if a carry does occur it will propagate all the way to the |
| * MSB. As a result a single shift is enough to get the carry |
| */ |
| u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); |
| |
| /* Clear carry from T[i] */ |
| *tmpc++ &= MP_MASK; |
| } |
| |
| /* now copy higher words if any, e.g. if A has more digits than B */ |
| for (; i < max; i++) { |
| /* T[i] = A[i] - U */ |
| *tmpc = *tmpa++ - u; |
| |
| /* U = carry bit of T[i] */ |
| u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); |
| |
| /* Clear carry from T[i] */ |
| *tmpc++ &= MP_MASK; |
| } |
| |
| /* clear digits above used (since we may not have grown result above) */ |
| for (i = c->used; i < olduse; i++) { |
| *tmpc++ = 0; |
| } |
| } |
| |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| /* Known optimal configurations |
| |
| CPU /Compiler /MUL CUTOFF/SQR CUTOFF |
| ------------------------------------------------------------- |
| Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-) |
| |
| */ |
| |
| int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */ |
| KARATSUBA_SQR_CUTOFF = 128; /* Min. number of digits before Karatsuba squaring is used. */ |