| /* |
| * File crc32.c - calculate CRC32 checksum of a file |
| * |
| * Copyright (C) 1996, Eric Youngdale. |
| * 1999-2007 Eric Pouech |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA |
| */ |
| |
| #include "config.h" |
| #include "wine/port.h" |
| |
| #include <stdio.h> |
| |
| #include "dbghelp_private.h" |
| |
| /* Copyright (C) 1986 Gary S. Brown |
| * Modified by Robert Shearman. You may use the following calc_crc32 code or |
| * tables extracted from it, as desired without restriction. */ |
| |
| /**********************************************************************\ |
| |* Demonstration program to compute the 32-bit CRC used as the frame *| |
| |* check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *| |
| |* and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *| |
| |* protocol). The 32-bit FCS was added via the Federal Register, *| |
| |* 1 June 1982, p.23798. I presume but don't know for certain that *| |
| |* this polynomial is or will be included in CCITT V.41, which *| |
| |* defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *| |
| |* PUB 78 says that the 32-bit FCS reduces otherwise undetected *| |
| |* errors by a factor of 10^-5 over 16-bit FCS. *| |
| \**********************************************************************/ |
| |
| /* First, the polynomial itself and its table of feedback terms. The */ |
| /* polynomial is */ |
| /* X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0 */ |
| /* Note that we take it "backwards" and put the highest-order term in */ |
| /* the lowest-order bit. The X^32 term is "implied"; the LSB is the */ |
| /* X^31 term, etc. The X^0 term (usually shown as "+1") results in */ |
| /* the MSB being 1. */ |
| |
| /* Note that the usual hardware shift register implementation, which */ |
| /* is what we're using (we're merely optimizing it by doing eight-bit */ |
| /* chunks at a time) shifts bits into the lowest-order term. In our */ |
| /* implementation, that means shifting towards the right. Why do we */ |
| /* do it this way? Because the calculated CRC must be transmitted in */ |
| /* order from highest-order term to lowest-order term. UARTs transmit */ |
| /* characters in order from LSB to MSB. By storing the CRC this way, */ |
| /* we hand it to the UART in the order low-byte to high-byte; the UART */ |
| /* sends each low-bit to high-bit; and the result is transmission bit */ |
| /* by bit from highest- to lowest-order term without requiring any bit */ |
| /* shuffling on our part. Reception works similarly. */ |
| |
| /* The feedback terms table consists of 256, 32-bit entries. Notes: */ |
| /* */ |
| /* 1. The table can be generated at runtime if desired; code to do so */ |
| /* is shown later. It might not be obvious, but the feedback */ |
| /* terms simply represent the results of eight shift/xor opera- */ |
| /* tions for all combinations of data and CRC register values. */ |
| /* */ |
| /* 2. The CRC accumulation logic is the same for all CRC polynomials, */ |
| /* be they sixteen or thirty-two bits wide. You simply choose the */ |
| /* appropriate table. Alternatively, because the table can be */ |
| /* generated at runtime, you can start by generating the table for */ |
| /* the polynomial in question and use exactly the same "updcrc", */ |
| /* if your application needn't simultaneously handle two CRC */ |
| /* polynomials. (Note, however, that XMODEM is strange.) */ |
| /* */ |
| /* 3. For 16-bit CRCs, the table entries need be only 16 bits wide; */ |
| /* of course, 32-bit entries work OK if the high 16 bits are zero. */ |
| /* */ |
| /* 4. The values must be right-shifted by eight bits by the "updcrc" */ |
| /* logic; the shift must be unsigned (bring in zeroes). On some */ |
| /* hardware you could probably optimize the shift in assembler by */ |
| /* using byte-swap instructions. */ |
| |
| |
| DWORD calc_crc32(int fd) |
| { |
| #define UPDC32(octet,crc) (crc_32_tab[((crc) ^ (octet)) & 0xff] ^ ((crc) >> 8)) |
| static const DWORD crc_32_tab[] = |
| { /* CRC polynomial 0xedb88320 */ |
| 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, |
| 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, |
| 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, |
| 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, |
| 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, |
| 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, |
| 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, |
| 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, |
| 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, |
| 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, |
| 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, |
| 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, |
| 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, |
| 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, |
| 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, |
| 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, |
| 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, |
| 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, |
| 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, |
| 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, |
| 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, |
| 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, |
| 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, |
| 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, |
| 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, |
| 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, |
| 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, |
| 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, |
| 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, |
| 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, |
| 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, |
| 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, |
| 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, |
| 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, |
| 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, |
| 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, |
| 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, |
| 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, |
| 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, |
| 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, |
| 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, |
| 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, |
| 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d |
| }; |
| int i, r; |
| unsigned char buffer[8192]; |
| DWORD crc = ~0; |
| |
| lseek(fd, 0, SEEK_SET); |
| while ((r = read(fd, buffer, sizeof(buffer))) > 0) |
| { |
| for (i = 0; i < r; i++) crc = UPDC32(buffer[i], crc); |
| } |
| return ~crc; |
| #undef UPDC32 |
| } |