blob: 0b8fa33310cad6ed25b8db8451ec28fc062d47ee [file] [log] [blame]
/*
* Copyright 2007 Vijay Kiran Kamuju
* Copyright 2007 David Adam
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <assert.h>
#include "d3drmdef.h"
#include <math.h>
#include "wine/test.h"
#define PI (4*atan(1.0))
#define admit_error 0.000001
#define expect_mat( expectedmat, gotmat)\
{ \
int i,j,equal=1; \
for (i=0; i<4; i++)\
{\
for (j=0; j<4; j++)\
{\
if (fabs(expectedmat[i][j]-gotmat[i][j])>admit_error)\
{\
equal=0;\
}\
}\
}\
ok(equal, "Expected matrix=\n(%f,%f,%f,%f\n %f,%f,%f,%f\n %f,%f,%f,%f\n %f,%f,%f,%f\n)\n\n" \
"Got matrix=\n(%f,%f,%f,%f\n %f,%f,%f,%f\n %f,%f,%f,%f\n %f,%f,%f,%f)\n", \
expectedmat[0][0],expectedmat[0][1],expectedmat[0][2],expectedmat[0][3], \
expectedmat[1][0],expectedmat[1][1],expectedmat[1][2],expectedmat[1][3], \
expectedmat[2][0],expectedmat[2][1],expectedmat[2][2],expectedmat[2][3], \
expectedmat[3][0],expectedmat[3][1],expectedmat[3][2],expectedmat[3][3], \
gotmat[0][0],gotmat[0][1],gotmat[0][2],gotmat[0][3], \
gotmat[1][0],gotmat[1][1],gotmat[1][2],gotmat[1][3], \
gotmat[2][0],gotmat[2][1],gotmat[2][2],gotmat[2][3], \
gotmat[3][0],gotmat[3][1],gotmat[3][2],gotmat[3][3] ); \
}
#define expect_quat(expectedquat,gotquat) \
ok( (fabs(U1(expectedquat.v).x-U1(gotquat.v).x)<admit_error) && \
(fabs(U2(expectedquat.v).y-U2(gotquat.v).y)<admit_error) && \
(fabs(U3(expectedquat.v).z-U3(gotquat.v).z)<admit_error) && \
(fabs(expectedquat.s-gotquat.s)<admit_error), \
"Expected Quaternion %f %f %f %f , Got Quaternion %f %f %f %f\n", \
expectedquat.s,U1(expectedquat.v).x,U2(expectedquat.v).y,U3(expectedquat.v).z, \
gotquat.s,U1(gotquat.v).x,U2(gotquat.v).y,U3(gotquat.v).z);
#define expect_vec(expectedvec,gotvec) \
ok( ((fabs(U1(expectedvec).x-U1(gotvec).x)<admit_error)&&(fabs(U2(expectedvec).y-U2(gotvec).y)<admit_error)&&(fabs(U3(expectedvec).z-U3(gotvec).z)<admit_error)), \
"Expected Vector= (%f, %f, %f)\n , Got Vector= (%f, %f, %f)\n", \
U1(expectedvec).x,U2(expectedvec).y,U3(expectedvec).z, U1(gotvec).x, U2(gotvec).y, U3(gotvec).z);
static HMODULE d3drm_handle = 0;
static void (WINAPI * pD3DRMMatrixFromQuaternion)(D3DRMMATRIX4D, LPD3DRMQUATERNION);
static LPD3DVECTOR (WINAPI* pD3DRMVectorAdd)(LPD3DVECTOR, LPD3DVECTOR, LPD3DVECTOR);
static LPD3DVECTOR (WINAPI* pD3DRMVectorCrossProduct)(LPD3DVECTOR, LPD3DVECTOR, LPD3DVECTOR);
static D3DVALUE (WINAPI* pD3DRMVectorDotProduct)(LPD3DVECTOR, LPD3DVECTOR);
static D3DVALUE (WINAPI* pD3DRMVectorModulus)(LPD3DVECTOR);
static LPD3DVECTOR (WINAPI * pD3DRMVectorNormalize)(LPD3DVECTOR);
static LPD3DVECTOR (WINAPI * pD3DRMVectorReflect)(LPD3DVECTOR, LPD3DVECTOR, LPD3DVECTOR);
static LPD3DVECTOR (WINAPI * pD3DRMVectorRotate)(LPD3DVECTOR, LPD3DVECTOR, LPD3DVECTOR, D3DVALUE);
static LPD3DVECTOR (WINAPI * pD3DRMVectorScale)(LPD3DVECTOR, LPD3DVECTOR, D3DVALUE);
static LPD3DVECTOR (WINAPI * pD3DRMVectorSubtract)(LPD3DVECTOR, LPD3DVECTOR, LPD3DVECTOR);
static LPD3DRMQUATERNION (WINAPI * pD3DRMQuaternionFromRotation)(LPD3DRMQUATERNION, LPD3DVECTOR, D3DVALUE);
static LPD3DRMQUATERNION (WINAPI * pD3DRMQuaternionSlerp)(LPD3DRMQUATERNION, LPD3DRMQUATERNION, LPD3DRMQUATERNION, D3DVALUE);
#define D3DRM_GET_PROC(func) \
p ## func = (void*)GetProcAddress(d3drm_handle, #func); \
if(!p ## func) { \
trace("GetProcAddress(%s) failed\n", #func); \
FreeLibrary(d3drm_handle); \
return FALSE; \
}
static BOOL InitFunctionPtrs(void)
{
d3drm_handle = LoadLibraryA("d3drm.dll");
if(!d3drm_handle)
{
skip("Could not load d3drm.dll\n");
return FALSE;
}
D3DRM_GET_PROC(D3DRMMatrixFromQuaternion)
D3DRM_GET_PROC(D3DRMVectorAdd)
D3DRM_GET_PROC(D3DRMVectorCrossProduct)
D3DRM_GET_PROC(D3DRMVectorDotProduct)
D3DRM_GET_PROC(D3DRMVectorModulus)
D3DRM_GET_PROC(D3DRMVectorNormalize)
D3DRM_GET_PROC(D3DRMVectorReflect)
D3DRM_GET_PROC(D3DRMVectorRotate)
D3DRM_GET_PROC(D3DRMVectorScale)
D3DRM_GET_PROC(D3DRMVectorSubtract)
D3DRM_GET_PROC(D3DRMQuaternionFromRotation)
D3DRM_GET_PROC(D3DRMQuaternionSlerp)
return TRUE;
}
static void VectorTest(void)
{
D3DVALUE mod,par,theta;
D3DVECTOR e,r,u,v,w,axis,casnul,norm,ray;
U1(u).x=2.0;U2(u).y=2.0;U3(u).z=1.0;
U1(v).x=4.0;U2(v).y=4.0;U3(v).z=0.0;
/*______________________VectorAdd_________________________________*/
pD3DRMVectorAdd(&r,&u,&v);
U1(e).x=6.0;U2(e).y=6.0;U3(e).z=1.0;
expect_vec(e,r);
/*_______________________VectorSubtract__________________________*/
pD3DRMVectorSubtract(&r,&u,&v);
U1(e).x=-2.0;U2(e).y=-2.0;U3(e).z=1.0;
expect_vec(e,r);
/*_______________________VectorCrossProduct_______________________*/
pD3DRMVectorCrossProduct(&r,&u,&v);
U1(e).x=-4.0;U2(e).y=4.0;U3(e).z=0.0;
expect_vec(e,r);
/*_______________________VectorDotProduct__________________________*/
mod=pD3DRMVectorDotProduct(&u,&v);
ok((mod == 16.0), "Expected 16.0, Got %f\n",mod);
/*_______________________VectorModulus_____________________________*/
mod=pD3DRMVectorModulus(&u);
ok((mod == 3.0), "Expected 3.0, Got %f\n",mod);
/*_______________________VectorNormalize___________________________*/
pD3DRMVectorNormalize(&u);
U1(e).x=2.0/3.0;U2(e).y=2.0/3.0;U3(e).z=1.0/3.0;
expect_vec(e,u);
/* If u is the NULL vector, MSDN says that the return vector is NULL. In fact, the returned vector is (1,0,0). The following test case prove it. */
U1(casnul).x=0.0; U2(casnul).y=0.0; U3(casnul).z=0.0;
pD3DRMVectorNormalize(&casnul);
U1(e).x=1.0; U2(e).y=0.0; U3(e).z=0.0;
expect_vec(e,casnul);
/*____________________VectorReflect_________________________________*/
U1(ray).x=3.0; U2(ray).y=-4.0; U3(ray).z=5.0;
U1(norm).x=1.0; U2(norm).y=-2.0; U3(norm).z=6.0;
U1(e).x=79.0; U2(e).y=-160.0; U3(e).z=487.0;
pD3DRMVectorReflect(&r,&ray,&norm);
expect_vec(e,r);
/*_______________________VectorRotate_______________________________*/
U1(w).x=3.0; U2(w).y=4.0; U3(w).z=0.0;
U1(axis).x=0.0; U2(axis).y=0.0; U3(axis).z=1.0;
theta=2.0*PI/3.0;
pD3DRMVectorRotate(&r,&w,&axis,theta);
U1(e).x=-0.3-0.4*sqrt(3.0); U2(e).y=0.3*sqrt(3.0)-0.4; U3(e).z=0.0;
expect_vec(e,r);
/* The same formula gives D3DRMVectorRotate, for theta in [-PI/2;+PI/2] or not. The following test proves this fact.*/
theta=-PI/4.0;
pD3DRMVectorRotate(&r,&w,&axis,-PI/4);
U1(e).x=1.4/sqrt(2.0); U2(e).y=0.2/sqrt(2.0); U3(e).z=0.0;
expect_vec(e,r);
/*_______________________VectorScale__________________________*/
par=2.5;
pD3DRMVectorScale(&r,&v,par);
U1(e).x=10.0; U2(e).y=10.0; U3(e).z=0.0;
expect_vec(e,r);
}
static void MatrixTest(void)
{
D3DRMQUATERNION q;
D3DRMMATRIX4D exp,mat;
exp[0][0]=-49.0; exp[0][1]=4.0; exp[0][2]=22.0; exp[0][3]=0.0;
exp[1][0]=20.0; exp[1][1]=-39.0; exp[1][2]=20.0; exp[1][3]=0.0;
exp[2][0]=10.0; exp[2][1]=28.0; exp[2][2]=-25.0; exp[2][3]=0.0;
exp[3][0]=0.0; exp[3][1]=0.0; exp[3][2]=0.0; exp[3][3]=1.0;
q.s=1.0; U1(q.v).x=2.0; U2(q.v).y=3.0; U3(q.v).z=4.0;
pD3DRMMatrixFromQuaternion(mat,&q);
expect_mat(exp,mat);
}
static void QuaternionTest(void)
{
D3DVECTOR axis;
D3DVALUE g,h,epsilon,par,theta;
D3DRMQUATERNION q,q1,q2,r;
/*_________________QuaternionFromRotation___________________*/
U1(axis).x=1.0; U2(axis).y=1.0; U3(axis).z=1.0;
theta=2.0*PI/3.0;
pD3DRMQuaternionFromRotation(&r,&axis,theta);
q.s=0.5; U1(q.v).x=0.5; U2(q.v).y=0.5; U3(q.v).z=0.5;
expect_quat(q,r);
/*_________________QuaternionSlerp_________________________*/
/* Interpolation slerp is in fact a linear interpolation, not a spherical linear
* interpolation. Moreover, if the angle of the two quaternions is in ]PI/2;3PI/2[, QuaternionSlerp
* interpolates between the first quaternion and the opposite of the second one. The test proves
* these two facts. */
par=0.31;
q1.s=1.0; U1(q1.v).x=2.0; U2(q1.v).y=3.0; U3(q1.v).z=50.0;
q2.s=-4.0; U1(q2.v).x=6.0; U2(q2.v).y=7.0; U3(q2.v).z=8.0;
/* The angle between q1 and q2 is in [-PI/2,PI/2]. So, one interpolates between q1 and q2. */
epsilon=1.0;
g=1.0-par; h=epsilon*par;
/* Part of the test proving that the interpolation is linear. */
q.s=g*q1.s+h*q2.s;
U1(q.v).x=g*U1(q1.v).x+h*U1(q2.v).x;
U2(q.v).y=g*U2(q1.v).y+h*U2(q2.v).y;
U3(q.v).z=g*U3(q1.v).z+h*U3(q2.v).z;
pD3DRMQuaternionSlerp(&r,&q1,&q2,par);
expect_quat(q,r);
q1.s=1.0; U1(q1.v).x=2.0; U2(q1.v).y=3.0; U3(q1.v).z=50.0;
q2.s=-94.0; U1(q2.v).x=6.0; U2(q2.v).y=7.0; U3(q2.v).z=-8.0;
/* The angle between q1 and q2 is not in [-PI/2,PI/2]. So, one interpolates between q1 and -q2. */
epsilon=-1.0;
g=1.0-par; h=epsilon*par;
q.s=g*q1.s+h*q2.s;
U1(q.v).x=g*U1(q1.v).x+h*U1(q2.v).x;
U2(q.v).y=g*U2(q1.v).y+h*U2(q2.v).y;
U3(q.v).z=g*U3(q1.v).z+h*U3(q2.v).z;
pD3DRMQuaternionSlerp(&r,&q1,&q2,par);
expect_quat(q,r);
}
START_TEST(vector)
{
if(!InitFunctionPtrs())
return;
VectorTest();
MatrixTest();
QuaternionTest();
FreeLibrary(d3drm_handle);
}