| /* |
| * File stabs.c - read stabs information from the wine executable itself. |
| * |
| * Copyright (C) 1996, Eric Youngdale. |
| */ |
| |
| #include <sys/types.h> |
| #include <fcntl.h> |
| #include <sys/stat.h> |
| #include <sys/mman.h> |
| #include <limits.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| #ifndef PATH_MAX |
| #define PATH_MAX _MAX_PATH |
| #endif |
| |
| #include "win.h" |
| #include "debugger.h" |
| #include "xmalloc.h" |
| |
| #ifdef __svr4__ |
| #define __ELF__ |
| #endif |
| |
| #ifdef __ELF__ |
| #include <elf.h> |
| #include <link.h> |
| #include <sys/mman.h> |
| #elif defined(__EMX__) |
| #include <a_out.h> |
| #else |
| #include <a.out.h> |
| #endif |
| |
| #ifndef N_UNDF |
| #define N_UNDF 0x00 |
| #endif |
| |
| #define N_GSYM 0x20 |
| #define N_FUN 0x24 |
| #define N_STSYM 0x26 |
| #define N_LCSYM 0x28 |
| #define N_MAIN 0x2a |
| #define N_ROSYM 0x2c |
| #define N_OPT 0x3c |
| #define N_RSYM 0x40 |
| #define N_SLINE 0x44 |
| #define N_SO 0x64 |
| #define N_LSYM 0x80 |
| #define N_BINCL 0x82 |
| #define N_SOL 0x84 |
| #define N_PSYM 0xa0 |
| #define N_EINCL 0xa2 |
| #define N_LBRAC 0xc0 |
| #define N_RBRAC 0xe0 |
| |
| |
| /* |
| * This is how we translate stab types into our internal representations |
| * of datatypes. |
| */ |
| static struct datatype ** stab_types = NULL; |
| static int num_stab_types = 0; |
| |
| /* |
| * Set so that we know the main executable name and path. |
| */ |
| char * DEBUG_argv0; |
| |
| struct stab_nlist { |
| union { |
| char *n_name; |
| struct stab_nlist *n_next; |
| long n_strx; |
| } n_un; |
| unsigned char n_type; |
| char n_other; |
| short n_desc; |
| unsigned long n_value; |
| }; |
| |
| /* |
| * This is used to keep track of known datatypes so that we don't redefine |
| * them over and over again. It sucks up lots of memory otherwise. |
| */ |
| struct known_typedef |
| { |
| struct known_typedef * next; |
| char * name; |
| int ndefs; |
| struct datatype * types[0]; |
| }; |
| |
| #define NR_STAB_HASH 521 |
| |
| struct known_typedef * ktd_head[NR_STAB_HASH] = {NULL,}; |
| |
| static unsigned int stab_hash( const char * name ) |
| { |
| unsigned int hash = 0; |
| unsigned int tmp; |
| const char * p; |
| |
| p = name; |
| |
| while (*p) |
| { |
| hash = (hash << 4) + *p++; |
| |
| if( (tmp = (hash & 0xf0000000)) ) |
| { |
| hash ^= tmp >> 24; |
| } |
| hash &= ~tmp; |
| } |
| return hash % NR_STAB_HASH; |
| } |
| |
| |
| static void stab_strcpy(char * dest, const char * source) |
| { |
| /* |
| * A strcpy routine that stops when we hit the ':' character. |
| * Faster than copying the whole thing, and then nuking the |
| * ':'. |
| */ |
| while(*source != '\0' && *source != ':') |
| *dest++ = *source++; |
| *dest++ = '\0'; |
| } |
| |
| #define MAX_TD_NESTING 128 |
| |
| static int **typenums; |
| static int *nroftypenums=NULL; |
| static int nrofnroftypenums=0; |
| static int curtypenum = 0; |
| |
| static |
| int |
| DEBUG_FileSubNr2StabEnum(int filenr,int subnr) { |
| if (nrofnroftypenums<=filenr) { |
| nroftypenums = xrealloc(nroftypenums,sizeof(nroftypenums[0])*(filenr+1)); |
| memset(nroftypenums+nrofnroftypenums,0,(filenr+1-nrofnroftypenums)*sizeof(nroftypenums[0])); |
| typenums = xrealloc(typenums,sizeof(typenums[0])*(filenr+1)); |
| memset(typenums+nrofnroftypenums,0,sizeof(typenums[0])*(filenr+1-nrofnroftypenums)); |
| nrofnroftypenums=filenr+1; |
| } |
| if (nroftypenums[filenr]<=subnr) { |
| typenums[filenr] = xrealloc(typenums[filenr],sizeof(typenums[0][0])*(subnr+1)); |
| memset(typenums[filenr]+nroftypenums[filenr],0,sizeof(typenums[0][0])*(subnr+1-nroftypenums[filenr])); |
| nroftypenums[filenr] = subnr+1; |
| } |
| if (!typenums[filenr][subnr]) |
| typenums[filenr][subnr]=++curtypenum; |
| |
| if( num_stab_types <= curtypenum ) { |
| num_stab_types = curtypenum + 256; |
| stab_types = (struct datatype **) xrealloc(stab_types, |
| num_stab_types * sizeof(struct datatype *) |
| ); |
| memset( stab_types + curtypenum, 0, sizeof(struct datatype *) * (num_stab_types - curtypenum) ); |
| } |
| //fprintf(stderr,"(%d,%d) is %d\n",filenr,subnr,typenums[filenr][subnr]); |
| return typenums[filenr][subnr]; |
| } |
| |
| static |
| int |
| DEBUG_ReadTypeEnumBackwards(char*x) { |
| int filenr,subnr; |
| |
| if (*x==')') { |
| while (*x!='(') |
| x--; |
| x++; /* '(' */ |
| filenr=strtol(x,&x,10); /* <int> */ |
| x++; /* ',' */ |
| subnr=strtol(x,&x,10); /* <int> */ |
| x++; /* ')' */ |
| } else { |
| while ((*x>='0') && (*x<='9')) |
| x--; |
| filenr = 0; |
| subnr = atol(x+1); |
| } |
| return DEBUG_FileSubNr2StabEnum(filenr,subnr); |
| } |
| |
| static |
| int |
| DEBUG_ReadTypeEnum(char **x) { |
| int filenr,subnr; |
| |
| if (**x=='(') { |
| (*x)++; /* '(' */ |
| filenr=strtol(*x,x,10); /* <int> */ |
| (*x)++; /* ',' */ |
| subnr=strtol(*x,x,10); /* <int> */ |
| (*x)++; /* ')' */ |
| } else { |
| filenr = 0; |
| subnr = strtol(*x,x,10); /* <int> */ |
| } |
| return DEBUG_FileSubNr2StabEnum(filenr,subnr); |
| } |
| |
| static |
| int |
| DEBUG_RegisterTypedef(const char * name, struct datatype ** types, int ndef) |
| { |
| int hash; |
| struct known_typedef * ktd; |
| |
| if( ndef == 1 ) |
| return TRUE; |
| |
| ktd = (struct known_typedef *) xmalloc(sizeof(struct known_typedef) |
| + ndef * sizeof(struct datatype *)); |
| |
| hash = stab_hash(name); |
| |
| ktd->name = xstrdup(name); |
| ktd->ndefs = ndef; |
| memcpy(&ktd->types[0], types, ndef * sizeof(struct datatype *)); |
| ktd->next = ktd_head[hash]; |
| ktd_head[hash] = ktd; |
| |
| return TRUE; |
| } |
| |
| static |
| int |
| DEBUG_HandlePreviousTypedef(const char * name, const char * stab) |
| { |
| int count; |
| enum debug_type expect; |
| int hash; |
| struct known_typedef * ktd; |
| char * ptr; |
| |
| hash = stab_hash(name); |
| |
| for(ktd = ktd_head[hash]; ktd; ktd = ktd->next) |
| if ((ktd->name[0] == name[0]) && (strcmp(name, ktd->name) == 0) ) |
| break; |
| |
| /* |
| * Didn't find it. This must be a new one. |
| */ |
| if( ktd == NULL ) |
| return FALSE; |
| |
| /* |
| * Examine the stab to make sure it has the same number of definitions. |
| */ |
| count = 0; |
| for(ptr = strchr(stab, '='); ptr; ptr = strchr(ptr+1, '=')) |
| { |
| if( count >= ktd->ndefs ) |
| return FALSE; |
| |
| /* |
| * Make sure the types of all of the objects is consistent with |
| * what we have already parsed. |
| */ |
| switch(ptr[1]) |
| { |
| case '*': |
| expect = DT_POINTER; |
| break; |
| case 's': |
| case 'u': |
| expect = DT_STRUCT; |
| break; |
| case 'a': |
| expect = DT_ARRAY; |
| break; |
| case '1': |
| case '(': |
| case 'r': |
| expect = DT_BASIC; |
| break; |
| case 'x': |
| expect = DT_STRUCT; |
| break; |
| case 'e': |
| expect = DT_ENUM; |
| break; |
| case 'f': |
| expect = DT_FUNC; |
| break; |
| default: |
| fprintf(stderr, "Unknown type (%c).\n",ptr[1]); |
| return FALSE; |
| } |
| if( expect != DEBUG_GetType(ktd->types[count]) ) |
| return FALSE; |
| count++; |
| } |
| |
| if( ktd->ndefs != count ) |
| return FALSE; |
| |
| /* |
| * Go through, dig out all of the type numbers, and substitute the |
| * appropriate things. |
| */ |
| count = 0; |
| for(ptr = strchr(stab, '='); ptr; ptr = strchr(ptr+1, '=')) |
| stab_types[DEBUG_ReadTypeEnumBackwards(ptr-1)] = ktd->types[count++]; |
| |
| return TRUE; |
| } |
| |
| static int DEBUG_FreeRegisteredTypedefs() |
| { |
| int count; |
| int j; |
| struct known_typedef * ktd; |
| struct known_typedef * next; |
| |
| count = 0; |
| for(j=0; j < NR_STAB_HASH; j++ ) |
| { |
| for(ktd = ktd_head[j]; ktd; ktd = next) |
| { |
| count++; |
| next = ktd->next; |
| free(ktd->name); |
| free(ktd); |
| } |
| ktd_head[j] = NULL; |
| } |
| |
| return TRUE; |
| |
| } |
| |
| static |
| int |
| DEBUG_ParseTypedefStab(char * ptr, const char * typename) |
| { |
| int arrmax; |
| int arrmin; |
| char * c; |
| struct datatype * curr_type; |
| struct datatype * datatype; |
| struct datatype * curr_types[MAX_TD_NESTING]; |
| char element_name[1024]; |
| int ntypes = 0; |
| int offset; |
| const char * orig_typename; |
| int size; |
| char * tc; |
| char * tc2; |
| int typenum; |
| |
| orig_typename = typename; |
| |
| if( DEBUG_HandlePreviousTypedef(typename, ptr) ) |
| return TRUE; |
| |
| /* |
| * Go from back to front. First we go through and figure out what |
| * type numbers we need, and register those types. Then we go in |
| * and fill the details. |
| */ |
| |
| for( c = strchr(ptr, '='); c != NULL; c = strchr(c + 1, '=') ) |
| { |
| /* |
| * Back up until we get to a non-numeric character. This is the type |
| * number. |
| */ |
| typenum = DEBUG_ReadTypeEnumBackwards(c-1); |
| |
| if( ntypes >= MAX_TD_NESTING ) |
| { |
| /* |
| * If this ever happens, just bump the counter. |
| */ |
| fprintf(stderr, "Typedef nesting overflow\n"); |
| return FALSE; |
| } |
| |
| switch(c[1]) |
| { |
| case '*': |
| stab_types[typenum] = DEBUG_NewDataType(DT_POINTER, NULL); |
| curr_types[ntypes++] = stab_types[typenum]; |
| break; |
| case 's': |
| case 'u': |
| stab_types[typenum] = DEBUG_NewDataType(DT_STRUCT, typename); |
| curr_types[ntypes++] = stab_types[typenum]; |
| break; |
| case 'a': |
| stab_types[typenum] = DEBUG_NewDataType(DT_ARRAY, NULL); |
| curr_types[ntypes++] = stab_types[typenum]; |
| break; |
| case '(': |
| case '1': |
| case 'r': |
| stab_types[typenum] = DEBUG_NewDataType(DT_BASIC, typename); |
| curr_types[ntypes++] = stab_types[typenum]; |
| break; |
| case 'x': |
| stab_strcpy(element_name, c + 3); |
| stab_types[typenum] = DEBUG_NewDataType(DT_STRUCT, element_name); |
| curr_types[ntypes++] = stab_types[typenum]; |
| break; |
| case 'e': |
| stab_types[typenum] = DEBUG_NewDataType(DT_ENUM, NULL); |
| curr_types[ntypes++] = stab_types[typenum]; |
| break; |
| case 'f': |
| stab_types[typenum] = DEBUG_NewDataType(DT_FUNC, NULL); |
| curr_types[ntypes++] = stab_types[typenum]; |
| break; |
| default: |
| fprintf(stderr, "Unknown type (%c).\n",c[1]); |
| } |
| typename = NULL; |
| } |
| |
| /* |
| * Now register the type so that if we encounter it again, we will know |
| * what to do. |
| */ |
| DEBUG_RegisterTypedef(orig_typename, curr_types, ntypes); |
| |
| /* |
| * OK, now take a second sweep through. Now we will be digging |
| * out the definitions of the various components, and storing |
| * them in the skeletons that we have already allocated. We take |
| * a right-to left search as this is much easier to parse. |
| */ |
| for( c = strrchr(ptr, '='); c != NULL; c = strrchr(ptr, '=') ) |
| { |
| int typenum = DEBUG_ReadTypeEnumBackwards(c-1); |
| curr_type = stab_types[typenum]; |
| |
| switch(c[1]) |
| { |
| case 'x': |
| tc = c + 3; |
| while( *tc != ':' ) |
| tc++; |
| tc++; |
| if( *tc == '\0' ) |
| *c = '\0'; |
| else |
| strcpy(c, tc); |
| break; |
| case '*': |
| case 'f': |
| tc = c + 2; |
| datatype = stab_types[DEBUG_ReadTypeEnum(&tc)]; |
| DEBUG_SetPointerType(curr_type, datatype); |
| if( *tc == '\0' ) |
| *c = '\0'; |
| else |
| strcpy(c, tc); |
| break; |
| case '(': |
| case '1': |
| case 'r': |
| /* |
| * We have already handled these above. |
| */ |
| *c = '\0'; |
| break; |
| case 'a': |
| /* ar<typeinfo_nodef>;<int>;<int>;<typeinfo>,<int>,<int>;; */ |
| |
| tc = c + 3; |
| /* 'r' */ |
| DEBUG_ReadTypeEnum(&tc); |
| tc++; /* ';' */ |
| arrmin = strtol(tc, &tc, 10); /* <int> */ |
| tc++; /* ';' */ |
| arrmax = strtol(tc, &tc, 10); /* <int> */ |
| tc++; /* ';' */ |
| datatype = stab_types[DEBUG_ReadTypeEnum(&tc)]; /* <typeinfo> */ |
| if( *tc == '\0' ) |
| *c = '\0'; |
| else |
| strcpy(c, tc); |
| DEBUG_SetArrayParams(curr_type, arrmin, arrmax, datatype); |
| break; |
| case 's': |
| case 'u': { |
| int failure = 0; |
| |
| tc = c + 2; |
| if( DEBUG_SetStructSize(curr_type, strtol(tc, &tc, 10)) == FALSE ) |
| { |
| /* |
| * We have already filled out this structure. Nothing to do, |
| * so just skip forward to the end of the definition. |
| */ |
| while( tc[0] != ';' && tc[1] != ';' ) |
| tc++; |
| |
| tc += 2; |
| |
| if( *tc == '\0' ) |
| *c = '\0'; |
| else |
| strcpy(c, tc + 1); |
| continue; |
| } |
| |
| /* |
| * Now parse the individual elements of the structure/union. |
| */ |
| while(*tc != ';') |
| { |
| char *ti; |
| tc2 = element_name; |
| while(*tc != ':') |
| *tc2++ = *tc++; |
| tc++; |
| *tc2++ = '\0'; |
| ti=tc; |
| datatype = stab_types[DEBUG_ReadTypeEnum(&tc)]; |
| *tc='\0'; |
| tc++; |
| offset = strtol(tc, &tc, 10); |
| tc++; |
| size = strtol(tc, &tc, 10); |
| tc++; |
| if (datatype) |
| DEBUG_AddStructElement(curr_type, element_name, datatype, offset, size); |
| else { |
| failure = 1; |
| /* ... but proceed parsing to the end of the stab */ |
| } |
| } |
| |
| if (failure) { |
| /* if we had a undeclared value this one is undeclared too. |
| * remove it from the stab_types. |
| * I just set it to NULL to detect bugs in my thoughtprocess. |
| * FIXME: leaks the memory for the structure elements. |
| * FIXME: such structures should have been optimized away |
| * by ld. |
| */ |
| stab_types[typenum] = NULL; |
| } |
| if( *tc == '\0' ) |
| *c = '\0'; |
| else |
| strcpy(c, tc + 1); |
| break; |
| } |
| case 'e': |
| tc = c + 2; |
| /* |
| * Now parse the individual elements of the structure/union. |
| */ |
| while(*tc != ';') |
| { |
| tc2 = element_name; |
| while(*tc != ':') |
| *tc2++ = *tc++; |
| tc++; |
| *tc2++ = '\0'; |
| offset = strtol(tc, &tc, 10); |
| tc++; |
| DEBUG_AddStructElement(curr_type, element_name, NULL, offset, 0); |
| } |
| if( *tc == '\0' ) |
| *c = '\0'; |
| else |
| strcpy(c, tc + 1); |
| break; |
| default: |
| fprintf(stderr, "Unknown type (%c).\n",c[1]); |
| break; |
| } |
| } |
| |
| return TRUE; |
| |
| } |
| |
| static struct datatype * |
| DEBUG_ParseStabType(const char * stab) |
| { |
| char * c; |
| |
| /* |
| * Look through the stab definition, and figure out what datatype |
| * this represents. If we have something we know about, assign the |
| * type. |
| */ |
| c = strchr(stab, ':'); |
| if( c == NULL ) |
| return NULL; |
| |
| c++; |
| /* |
| * The next character says more about the type (i.e. data, function, etc) |
| * of symbol. Skip it. |
| */ |
| c++; |
| /* |
| * The next is either an integer or a (integer,integer). |
| * The DEBUG_ReadTypeEnum takes care that stab_types is large enough. |
| */ |
| return stab_types[DEBUG_ReadTypeEnum(&c)]; |
| } |
| |
| static |
| int |
| DEBUG_ParseStabs(char * addr, unsigned int load_offset, |
| unsigned int staboff, int stablen, |
| unsigned int strtaboff, int strtablen) |
| { |
| struct name_hash * curr_func = NULL; |
| struct wine_locals * curr_loc = NULL; |
| struct name_hash * curr_sym = NULL; |
| char currpath[PATH_MAX]; |
| int i; |
| int ignore = FALSE; |
| int last_nso = -1; |
| int len; |
| DBG_ADDR new_addr; |
| int nstab; |
| char * ptr; |
| char * stabbuff; |
| int stabbufflen; |
| struct stab_nlist * stab_ptr; |
| char * strs; |
| int strtabinc; |
| char * subpath = NULL; |
| char symname[4096]; |
| |
| nstab = stablen / sizeof(struct stab_nlist); |
| stab_ptr = (struct stab_nlist *) (addr + staboff); |
| strs = (char *) (addr + strtaboff); |
| |
| memset(currpath, 0, sizeof(currpath)); |
| |
| /* |
| * Allocate a buffer into which we can build stab strings for cases |
| * where the stab is continued over multiple lines. |
| */ |
| stabbufflen = 65536; |
| stabbuff = (char *) xmalloc(stabbufflen); |
| |
| strtabinc = 0; |
| stabbuff[0] = '\0'; |
| for(i=0; i < nstab; i++, stab_ptr++ ) |
| { |
| ptr = strs + (unsigned int) stab_ptr->n_un.n_name; |
| if( ptr[strlen(ptr) - 1] == '\\' ) |
| { |
| /* |
| * Indicates continuation. Append this to the buffer, and go onto the |
| * next record. Repeat the process until we find a stab without the |
| * '/' character, as this indicates we have the whole thing. |
| */ |
| len = strlen(ptr); |
| if( strlen(stabbuff) + len > stabbufflen ) |
| { |
| stabbufflen += 65536; |
| stabbuff = (char *) xrealloc(stabbuff, stabbufflen); |
| } |
| strncat(stabbuff, ptr, len - 1); |
| continue; |
| } |
| else if( stabbuff[0] != '\0' ) |
| { |
| strcat( stabbuff, ptr); |
| ptr = stabbuff; |
| } |
| |
| if( strchr(ptr, '=') != NULL ) |
| { |
| /* |
| * The stabs aren't in writable memory, so copy it over so we are |
| * sure we can scribble on it. |
| */ |
| if( ptr != stabbuff ) |
| { |
| strcpy(stabbuff, ptr); |
| ptr = stabbuff; |
| } |
| stab_strcpy(symname, ptr); |
| DEBUG_ParseTypedefStab(ptr, symname); |
| } |
| |
| switch(stab_ptr->n_type) |
| { |
| case N_GSYM: |
| /* |
| * These are useless with ELF. They have no value, and you have to |
| * read the normal symbol table to get the address. Thus we |
| * ignore them, and when we process the normal symbol table |
| * we should do the right thing. |
| * |
| * With a.out, they actually do make some amount of sense. |
| */ |
| new_addr.seg = 0; |
| new_addr.type = DEBUG_ParseStabType(ptr); |
| new_addr.off = load_offset + stab_ptr->n_value; |
| |
| stab_strcpy(symname, ptr); |
| #ifdef __ELF__ |
| curr_sym = DEBUG_AddSymbol( symname, &new_addr, currpath, |
| SYM_WINE | SYM_DATA | SYM_INVALID); |
| #else |
| curr_sym = DEBUG_AddSymbol( symname, &new_addr, currpath, |
| SYM_WINE | SYM_DATA ); |
| #endif |
| break; |
| case N_RBRAC: |
| case N_LBRAC: |
| /* |
| * We need to keep track of these so we get symbol scoping |
| * right for local variables. For now, we just ignore them. |
| * The hooks are already there for dealing with this however, |
| * so all we need to do is to keep count of the nesting level, |
| * and find the RBRAC for each matching LBRAC. |
| */ |
| break; |
| case N_LCSYM: |
| case N_STSYM: |
| /* |
| * These are static symbols and BSS symbols. |
| */ |
| new_addr.seg = 0; |
| new_addr.type = DEBUG_ParseStabType(ptr); |
| new_addr.off = load_offset + stab_ptr->n_value; |
| |
| stab_strcpy(symname, ptr); |
| curr_sym = DEBUG_AddSymbol( symname, &new_addr, currpath, |
| SYM_WINE | SYM_DATA ); |
| break; |
| case N_PSYM: |
| /* |
| * These are function parameters. |
| */ |
| if( (curr_func != NULL) |
| && (stab_ptr->n_value != 0) ) |
| { |
| stab_strcpy(symname, ptr); |
| curr_loc = DEBUG_AddLocal(curr_func, 0, |
| stab_ptr->n_value, 0, 0, symname); |
| DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr)); |
| } |
| break; |
| case N_RSYM: |
| if( curr_func != NULL ) |
| { |
| stab_strcpy(symname, ptr); |
| curr_loc = DEBUG_AddLocal(curr_func, stab_ptr->n_value, 0, 0, 0, symname); |
| DEBUG_SetLocalSymbolType( curr_loc, DEBUG_ParseStabType(ptr)); |
| } |
| break; |
| case N_LSYM: |
| if( (curr_func != NULL) |
| && (stab_ptr->n_value != 0) ) |
| { |
| stab_strcpy(symname, ptr); |
| DEBUG_AddLocal(curr_func, 0, |
| stab_ptr->n_value, 0, 0, symname); |
| } |
| else if (curr_func == NULL) |
| { |
| stab_strcpy(symname, ptr); |
| } |
| break; |
| case N_SLINE: |
| /* |
| * This is a line number. These are always relative to the start |
| * of the function (N_FUN), and this makes the lookup easier. |
| */ |
| if( curr_func != NULL ) |
| { |
| #ifdef __ELF__ |
| DEBUG_AddLineNumber(curr_func, stab_ptr->n_desc, |
| stab_ptr->n_value); |
| #else |
| #if 0 |
| /* |
| * This isn't right. The order of the stabs is different under |
| * a.out, and as a result we would end up attaching the line |
| * number to the wrong function. |
| */ |
| DEBUG_AddLineNumber(curr_func, stab_ptr->n_desc, |
| stab_ptr->n_value - curr_func->addr.off); |
| #endif |
| #endif |
| } |
| break; |
| case N_FUN: |
| /* |
| * First, clean up the previous function we were working on. |
| */ |
| DEBUG_Normalize(curr_func); |
| |
| /* |
| * For now, just declare the various functions. Later |
| * on, we will add the line number information and the |
| * local symbols. |
| */ |
| if( !ignore ) |
| { |
| new_addr.seg = 0; |
| new_addr.type = DEBUG_ParseStabType(ptr); |
| new_addr.off = load_offset + stab_ptr->n_value; |
| /* |
| * Copy the string to a temp buffer so we |
| * can kill everything after the ':'. We do |
| * it this way because otherwise we end up dirtying |
| * all of the pages related to the stabs, and that |
| * sucks up swap space like crazy. |
| */ |
| stab_strcpy(symname, ptr); |
| curr_func = DEBUG_AddSymbol( symname, &new_addr, currpath, |
| SYM_WINE | SYM_FUNC); |
| } |
| else |
| { |
| /* |
| * Don't add line number information for this function |
| * any more. |
| */ |
| curr_func = NULL; |
| } |
| break; |
| case N_SO: |
| /* |
| * This indicates a new source file. Append the records |
| * together, to build the correct path name. |
| */ |
| #ifndef __ELF__ |
| /* |
| * With a.out, there is no NULL string N_SO entry at the end of |
| * the file. Thus when we find non-consecutive entries, |
| * we consider that a new file is started. |
| */ |
| if( last_nso < i-1 ) |
| { |
| currpath[0] = '\0'; |
| DEBUG_Normalize(curr_func); |
| curr_func = NULL; |
| } |
| #endif |
| |
| if( *ptr == '\0' ) |
| { |
| /* |
| * Nuke old path. |
| */ |
| currpath[0] = '\0'; |
| DEBUG_Normalize(curr_func); |
| curr_func = NULL; |
| /* |
| * The datatypes that we would need to use are reset when |
| * we start a new file. |
| */ |
| memset(stab_types, 0, num_stab_types * sizeof(stab_types[0])); |
| /* |
| for (i=0;i<nrofnroftypenums;i++) |
| memset(typenums[i],0,sizeof(typenums[i][0])*nroftypenums[i]); |
| */ |
| } |
| else |
| { |
| if (*ptr != '/') |
| strcat(currpath, ptr); |
| else |
| strcpy(currpath, ptr); |
| subpath = ptr; |
| } |
| last_nso = i; |
| break; |
| case N_SOL: |
| /* |
| * This indicates we are including stuff from an include file. |
| * If this is the main source, enable the debug stuff, otherwise |
| * ignore it. |
| */ |
| if( subpath == NULL || strcmp(ptr, subpath) == 0 ) |
| { |
| ignore = FALSE; |
| } |
| else |
| { |
| ignore = TRUE; |
| DEBUG_Normalize(curr_func); |
| curr_func = NULL; |
| } |
| break; |
| case N_UNDF: |
| strs += strtabinc; |
| strtabinc = stab_ptr->n_value; |
| DEBUG_Normalize(curr_func); |
| curr_func = NULL; |
| break; |
| case N_OPT: |
| /* |
| * Ignore this. We don't care what it points to. |
| */ |
| break; |
| case N_BINCL: |
| case N_EINCL: |
| case N_MAIN: |
| /* |
| * Always ignore these. GCC doesn't even generate them. |
| */ |
| break; |
| default: |
| break; |
| } |
| |
| stabbuff[0] = '\0'; |
| |
| #if 0 |
| fprintf(stderr, "%d %x %s\n", stab_ptr->n_type, |
| (unsigned int) stab_ptr->n_value, |
| strs + (unsigned int) stab_ptr->n_un.n_name); |
| #endif |
| } |
| |
| if( stab_types != NULL ) |
| { |
| free(stab_types); |
| stab_types = NULL; |
| num_stab_types = 0; |
| } |
| |
| |
| DEBUG_FreeRegisteredTypedefs(); |
| |
| return TRUE; |
| } |
| |
| #ifdef __ELF__ |
| |
| /* |
| * Walk through the entire symbol table and add any symbols we find there. |
| * This can be used in cases where we have stripped ELF shared libraries, |
| * or it can be used in cases where we have data symbols for which the address |
| * isn't encoded in the stabs. |
| * |
| * This is all really quite easy, since we don't have to worry about line |
| * numbers or local data variables. |
| */ |
| static |
| int |
| DEBUG_ProcessElfSymtab(char * addr, unsigned int load_offset, |
| Elf32_Shdr * symtab, Elf32_Shdr * strtab) |
| { |
| char * curfile = NULL; |
| struct name_hash * curr_sym = NULL; |
| int flags; |
| int i; |
| DBG_ADDR new_addr; |
| int nsym; |
| char * strp; |
| char * symname; |
| Elf32_Sym * symp; |
| |
| |
| symp = (Elf32_Sym *) (addr + symtab->sh_offset); |
| nsym = symtab->sh_size / sizeof(*symp); |
| strp = (char *) (addr + strtab->sh_offset); |
| |
| for(i=0; i < nsym; i++, symp++) |
| { |
| /* |
| * Ignore certain types of entries which really aren't of that much |
| * interest. |
| */ |
| if( ELF32_ST_TYPE(symp->st_info) == STT_SECTION ) |
| { |
| continue; |
| } |
| |
| symname = strp + symp->st_name; |
| |
| /* |
| * Save the name of the current file, so we have a way of tracking |
| * static functions/data. |
| */ |
| if( ELF32_ST_TYPE(symp->st_info) == STT_FILE ) |
| { |
| curfile = symname; |
| continue; |
| } |
| |
| |
| /* |
| * See if we already have something for this symbol. |
| * If so, ignore this entry, because it would have come from the |
| * stabs or from a previous symbol. If the value is different, |
| * we will have to keep the darned thing, because there can be |
| * multiple local symbols by the same name. |
| */ |
| if( (DEBUG_GetSymbolValue(symname, -1, &new_addr, FALSE ) == TRUE) |
| && (new_addr.off == (load_offset + symp->st_value)) ) |
| continue; |
| |
| new_addr.seg = 0; |
| new_addr.type = NULL; |
| new_addr.off = load_offset + symp->st_value; |
| flags = SYM_WINE | (ELF32_ST_BIND(symp->st_info) == STT_FUNC |
| ? SYM_FUNC : SYM_DATA); |
| if( ELF32_ST_BIND(symp->st_info) == STB_GLOBAL ) |
| curr_sym = DEBUG_AddSymbol( symname, &new_addr, NULL, flags ); |
| else |
| curr_sym = DEBUG_AddSymbol( symname, &new_addr, curfile, flags ); |
| |
| /* |
| * Record the size of the symbol. This can come in handy in |
| * some cases. Not really used yet, however. |
| */ |
| if( symp->st_size != 0 ) |
| DEBUG_SetSymbolSize(curr_sym, symp->st_size); |
| } |
| |
| return TRUE; |
| } |
| |
| static |
| int |
| DEBUG_ProcessElfObject(char * filename, unsigned int load_offset) |
| { |
| int rtn = FALSE; |
| struct stat statbuf; |
| int fd = -1; |
| int status; |
| char * addr = (char *) 0xffffffff; |
| Elf32_Ehdr * ehptr; |
| Elf32_Shdr * spnt; |
| char * shstrtab; |
| int nsect; |
| int i; |
| int stabsect; |
| int stabstrsect; |
| |
| |
| /* |
| * Make sure we can stat and open this file. |
| */ |
| if( filename == NULL ) |
| goto leave; |
| |
| status = stat(filename, &statbuf); |
| if( status == -1 ) |
| { |
| char *s,*t,*fn,*paths; |
| if (strchr(filename,'/')) |
| goto leave; |
| paths = xstrdup(getenv("PATH")); |
| s = paths; |
| while (s && *s) { |
| t = strchr(s,':'); |
| if (t) *t='\0'; |
| fn = (char*)xmalloc(strlen(filename)+1+strlen(s)+1); |
| strcpy(fn,s); |
| strcat(fn,"/"); |
| strcat(fn,filename); |
| if ((rtn = DEBUG_ProcessElfObject(fn,load_offset))) { |
| free(fn); |
| free(paths); |
| goto leave; |
| } |
| free(fn); |
| if (t) s = t+1; else break; |
| } |
| if (!s || !*s) fprintf(stderr," not found"); |
| free(paths); |
| goto leave; |
| } |
| |
| /* |
| * Now open the file, so that we can mmap() it. |
| */ |
| fd = open(filename, O_RDONLY); |
| if( fd == -1 ) |
| goto leave; |
| |
| |
| /* |
| * Now mmap() the file. |
| */ |
| addr = mmap(0, statbuf.st_size, PROT_READ, |
| MAP_PRIVATE, fd, 0); |
| if( addr == (char *) 0xffffffff ) |
| goto leave; |
| |
| /* |
| * Next, we need to find a few of the internal ELF headers within |
| * this thing. We need the main executable header, and the section |
| * table. |
| */ |
| ehptr = (Elf32_Ehdr *) addr; |
| |
| if( load_offset == 0 ) |
| DEBUG_RegisterELFDebugInfo(ehptr->e_entry, statbuf.st_size, filename); |
| else |
| DEBUG_RegisterELFDebugInfo(load_offset, statbuf.st_size, filename); |
| |
| spnt = (Elf32_Shdr *) (addr + ehptr->e_shoff); |
| nsect = ehptr->e_shnum; |
| shstrtab = (addr + spnt[ehptr->e_shstrndx].sh_offset); |
| |
| stabsect = stabstrsect = -1; |
| |
| for(i=0; i < nsect; i++) |
| { |
| if( strcmp(shstrtab + spnt[i].sh_name, ".stab") == 0 ) |
| stabsect = i; |
| |
| if( strcmp(shstrtab + spnt[i].sh_name, ".stabstr") == 0 ) |
| stabstrsect = i; |
| } |
| |
| if( stabsect == -1 || stabstrsect == -1 ) |
| goto leave; |
| |
| /* |
| * OK, now just parse all of the stabs. |
| */ |
| rtn = DEBUG_ParseStabs(addr, load_offset, |
| spnt[stabsect].sh_offset, |
| spnt[stabsect].sh_size, |
| spnt[stabstrsect].sh_offset, |
| spnt[stabstrsect].sh_size); |
| |
| if( rtn != TRUE ) |
| goto leave; |
| |
| for(i=0; i < nsect; i++) |
| { |
| if( (strcmp(shstrtab + spnt[i].sh_name, ".symtab") == 0) |
| && (spnt[i].sh_type == SHT_SYMTAB) ) |
| DEBUG_ProcessElfSymtab(addr, load_offset, |
| spnt + i, spnt + spnt[i].sh_link); |
| |
| if( (strcmp(shstrtab + spnt[i].sh_name, ".dynsym") == 0) |
| && (spnt[i].sh_type == SHT_DYNSYM) ) |
| DEBUG_ProcessElfSymtab(addr, load_offset, |
| spnt + i, spnt + spnt[i].sh_link); |
| } |
| |
| leave: |
| |
| if( addr != (char *) 0xffffffff ) |
| munmap(addr, statbuf.st_size); |
| |
| if( fd != -1 ) |
| close(fd); |
| |
| return (rtn); |
| |
| } |
| |
| int |
| DEBUG_ReadExecutableDbgInfo(void) |
| { |
| Elf32_Ehdr * ehdr; |
| char * exe_name; |
| Elf32_Dyn * dynpnt; |
| struct r_debug * dbg_hdr; |
| struct link_map * lpnt = NULL; |
| extern Elf32_Dyn _DYNAMIC[]; |
| int rtn = FALSE; |
| int rowcount; |
| |
| exe_name = DEBUG_argv0; |
| |
| /* |
| * Make sure we can stat and open this file. |
| */ |
| if( exe_name == NULL ) |
| goto leave; |
| |
| fprintf( stderr, "Loading symbols: %s", exe_name ); |
| rowcount = 17 + strlen(exe_name); |
| DEBUG_ProcessElfObject(exe_name, 0); |
| |
| /* |
| * Finally walk the tables that the dynamic loader maintains to find all |
| * of the other shared libraries which might be loaded. Perform the |
| * same step for all of these. |
| */ |
| dynpnt = _DYNAMIC; |
| if( dynpnt == NULL ) |
| goto leave; |
| |
| /* |
| * Now walk the dynamic section (of the executable, looking for a DT_DEBUG |
| * entry. |
| */ |
| for(; dynpnt->d_tag != DT_NULL; dynpnt++) |
| if( dynpnt->d_tag == DT_DEBUG ) |
| break; |
| |
| if( (dynpnt->d_tag != DT_DEBUG) |
| || (dynpnt->d_un.d_ptr == 0) ) |
| goto leave; |
| |
| /* |
| * OK, now dig into the actual tables themselves. |
| */ |
| dbg_hdr = (struct r_debug *) dynpnt->d_un.d_ptr; |
| lpnt = dbg_hdr->r_map; |
| |
| /* |
| * Now walk the linked list. In all known ELF implementations, |
| * the dynamic loader maintains this linked list for us. In some |
| * cases the first entry doesn't appear with a name, in other cases it |
| * does. |
| */ |
| for(; lpnt; lpnt = lpnt->l_next ) |
| { |
| /* |
| * We already got the stuff for the executable using the |
| * argv[0] entry above. Here we only need to concentrate on any |
| * shared libraries which may be loaded. |
| */ |
| ehdr = (Elf32_Ehdr *) lpnt->l_addr; |
| if( (lpnt->l_addr == 0) || (ehdr->e_type != ET_DYN) ) |
| continue; |
| |
| if( lpnt->l_name != NULL ) |
| { |
| if (rowcount + strlen(lpnt->l_name) > 76) |
| { |
| fprintf( stderr, "\n " ); |
| rowcount = 3; |
| } |
| fprintf( stderr, " %s", lpnt->l_name ); |
| rowcount += strlen(lpnt->l_name) + 1; |
| DEBUG_ProcessElfObject(lpnt->l_name, lpnt->l_addr); |
| } |
| } |
| |
| rtn = TRUE; |
| |
| leave: |
| fprintf( stderr, "\n" ); |
| return (rtn); |
| |
| } |
| |
| #else /* !__ELF__ */ |
| |
| #ifdef linux |
| /* |
| * a.out linux. |
| */ |
| int |
| DEBUG_ReadExecutableDbgInfo(void) |
| { |
| char * addr = (char *) 0xffffffff; |
| char * exe_name; |
| struct exec * ahdr; |
| int fd = -1; |
| int rtn = FALSE; |
| unsigned int staboff; |
| struct stat statbuf; |
| int status; |
| unsigned int stroff; |
| |
| exe_name = DEBUG_argv0; |
| |
| /* |
| * Make sure we can stat and open this file. |
| */ |
| if( exe_name == NULL ) |
| goto leave; |
| |
| status = stat(exe_name, &statbuf); |
| if( status == -1 ) |
| goto leave; |
| |
| /* |
| * Now open the file, so that we can mmap() it. |
| */ |
| fd = open(exe_name, O_RDONLY); |
| if( fd == -1 ) |
| goto leave; |
| |
| |
| /* |
| * Now mmap() the file. |
| */ |
| addr = mmap(0, statbuf.st_size, PROT_READ, |
| MAP_PRIVATE, fd, 0); |
| if( addr == (char *) 0xffffffff ) |
| goto leave; |
| |
| ahdr = (struct exec *) addr; |
| |
| staboff = N_SYMOFF(*ahdr); |
| stroff = N_STROFF(*ahdr); |
| rtn = DEBUG_ParseStabs(addr, 0, |
| staboff, |
| ahdr->a_syms, |
| stroff, |
| statbuf.st_size - stroff); |
| |
| /* |
| * Give a nice status message here... |
| */ |
| fprintf( stderr, "Loading symbols: %s", exe_name ); |
| |
| rtn = TRUE; |
| |
| leave: |
| |
| if( addr != (char *) 0xffffffff ) |
| munmap(addr, statbuf.st_size); |
| |
| if( fd != -1 ) |
| close(fd); |
| |
| return (rtn); |
| |
| } |
| #else |
| /* |
| * Non-linux, non-ELF platforms. |
| */ |
| int |
| DEBUG_ReadExecutableDbgInfo(void) |
| { |
| return FALSE; |
| } |
| #endif |
| |
| #endif /* __ELF__ */ |