| /* |
| * cabextract.c |
| * |
| * Copyright 2000-2002 Stuart Caie |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Principal author: Stuart Caie <kyzer@4u.net> |
| * |
| * Based on specification documents from Microsoft Corporation |
| * Quantum decompression researched and implemented by Matthew Russoto |
| * Huffman code adapted from unlzx by Dave Tritscher. |
| * InfoZip team's INFLATE implementation adapted to MSZIP by Dirk Stoecker. |
| * Major LZX fixes by Jae Jung. |
| */ |
| |
| #include "config.h" |
| |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "windef.h" |
| #include "winbase.h" |
| #include "winerror.h" |
| |
| #include "cabinet.h" |
| |
| #include "wine/debug.h" |
| |
| WINE_DEFAULT_DEBUG_CHANNEL(cabinet); |
| |
| THOSE_ZIP_CONSTS; |
| |
| /* all the file IO is abstracted into these routines: |
| * cabinet_(open|close|read|seek|skip|getoffset) |
| * file_(open|close|write) |
| */ |
| |
| /* try to open a cabinet file, returns success */ |
| BOOL cabinet_open(struct cabinet *cab) |
| { |
| const char *name = cab->filename; |
| HANDLE fh; |
| |
| TRACE("(cab == ^%p)\n", cab); |
| |
| if ((fh = CreateFileA( name, GENERIC_READ, FILE_SHARE_READ, |
| NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL )) == INVALID_HANDLE_VALUE) { |
| ERR("Couldn't open %s\n", debugstr_a(name)); |
| return FALSE; |
| } |
| |
| /* seek to end of file and get the length */ |
| if ((cab->filelen = SetFilePointer(fh, 0, NULL, FILE_END)) == INVALID_SET_FILE_POINTER) { |
| if (GetLastError() != NO_ERROR) { |
| ERR("Seek END failed: %s\n", debugstr_a(name)); |
| CloseHandle(fh); |
| return FALSE; |
| } |
| } |
| |
| /* return to the start of the file */ |
| if (SetFilePointer(fh, 0, NULL, FILE_BEGIN) == INVALID_SET_FILE_POINTER) { |
| ERR("Seek BEGIN failed: %s\n", debugstr_a(name)); |
| CloseHandle(fh); |
| return FALSE; |
| } |
| |
| cab->fh = fh; |
| return TRUE; |
| } |
| |
| /******************************************************************* |
| * cabinet_close (internal) |
| * |
| * close the file handle in a struct cabinet. |
| */ |
| void cabinet_close(struct cabinet *cab) { |
| TRACE("(cab == ^%p)\n", cab); |
| if (cab->fh) CloseHandle(cab->fh); |
| cab->fh = 0; |
| } |
| |
| /******************************************************* |
| * ensure_filepath2 (internal) |
| */ |
| BOOL ensure_filepath2(char *path) { |
| BOOL ret = TRUE; |
| int len; |
| char *new_path; |
| |
| new_path = HeapAlloc(GetProcessHeap(), 0, (strlen(path) + 1)); |
| strcpy(new_path, path); |
| |
| while((len = strlen(new_path)) && new_path[len - 1] == '\\') |
| new_path[len - 1] = 0; |
| |
| TRACE("About to try to create directory %s\n", debugstr_a(new_path)); |
| while(!CreateDirectoryA(new_path, NULL)) { |
| char *slash; |
| DWORD last_error = GetLastError(); |
| |
| if(last_error == ERROR_ALREADY_EXISTS) |
| break; |
| |
| if(last_error != ERROR_PATH_NOT_FOUND) { |
| ret = FALSE; |
| break; |
| } |
| |
| if(!(slash = strrchr(new_path, '\\'))) { |
| ret = FALSE; |
| break; |
| } |
| |
| len = slash - new_path; |
| new_path[len] = 0; |
| if(! ensure_filepath2(new_path)) { |
| ret = FALSE; |
| break; |
| } |
| new_path[len] = '\\'; |
| TRACE("New path in next iteration: %s\n", debugstr_a(new_path)); |
| } |
| |
| HeapFree(GetProcessHeap(), 0, new_path); |
| return ret; |
| } |
| |
| |
| /********************************************************************** |
| * ensure_filepath (internal) |
| * |
| * ensure_filepath("a\b\c\d.txt") ensures a, a\b and a\b\c exist as dirs |
| */ |
| BOOL ensure_filepath(char *path) { |
| char new_path[MAX_PATH]; |
| int len, i, lastslashpos = -1; |
| |
| TRACE("(path == %s)\n", debugstr_a(path)); |
| |
| strcpy(new_path, path); |
| /* remove trailing slashes (shouldn't need to but wth...) */ |
| while ((len = strlen(new_path)) && new_path[len - 1] == '\\') |
| new_path[len - 1] = 0; |
| /* find the position of the last '\\' */ |
| for (i=0; i<MAX_PATH; i++) { |
| if (new_path[i] == 0) break; |
| if (new_path[i] == '\\') |
| lastslashpos = i; |
| } |
| if (lastslashpos > 0) { |
| new_path[lastslashpos] = 0; |
| /* may be trailing slashes but ensure_filepath2 will chop them */ |
| return ensure_filepath2(new_path); |
| } else |
| return TRUE; /* ? */ |
| } |
| |
| /******************************************************************* |
| * file_open (internal) |
| * |
| * opens a file for output, returns success |
| */ |
| BOOL file_open(struct cab_file *fi, BOOL lower, LPCSTR dir) |
| { |
| char c, *d, *name; |
| BOOL ok = FALSE; |
| const char *s; |
| |
| TRACE("(fi == ^%p, lower == %s, dir == %s)\n", fi, lower ? "TRUE" : "FALSE", debugstr_a(dir)); |
| |
| if (!(name = malloc(strlen(fi->filename) + (dir ? strlen(dir) : 0) + 2))) { |
| ERR("out of memory!\n"); |
| return FALSE; |
| } |
| |
| /* start with blank name */ |
| *name = 0; |
| |
| /* add output directory if needed */ |
| if (dir) { |
| strcpy(name, dir); |
| strcat(name, "\\"); |
| } |
| |
| /* remove leading slashes */ |
| s = (char *) fi->filename; |
| while (*s == '\\') s++; |
| |
| /* copy from fi->filename to new name. |
| * lowercases characters if needed. |
| */ |
| d = &name[strlen(name)]; |
| do { |
| c = *s++; |
| *d++ = (lower ? tolower((unsigned char) c) : c); |
| } while (c); |
| |
| /* create directories if needed, attempt to write file */ |
| if (ensure_filepath(name)) { |
| fi->fh = CreateFileA(name, GENERIC_WRITE, 0, NULL, |
| CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0); |
| if (fi->fh != INVALID_HANDLE_VALUE) |
| ok = TRUE; |
| else { |
| ERR("CreateFileA returned INVALID_HANDLE_VALUE\n"); |
| fi->fh = 0; |
| } |
| } else |
| ERR("Couldn't ensure filepath for %s\n", debugstr_a(name)); |
| |
| if (!ok) { |
| ERR("Couldn't open file %s for writing\n", debugstr_a(name)); |
| } |
| |
| /* as full filename is no longer needed, free it */ |
| free(name); |
| |
| return ok; |
| } |
| |
| /******************************************************** |
| * close_file (internal) |
| * |
| * closes a completed file |
| */ |
| void file_close(struct cab_file *fi) |
| { |
| TRACE("(fi == ^%p)\n", fi); |
| |
| if (fi->fh) { |
| CloseHandle(fi->fh); |
| } |
| fi->fh = 0; |
| } |
| |
| /****************************************************************** |
| * file_write (internal) |
| * |
| * writes from buf to a file specified as a cab_file struct. |
| * returns success/failure |
| */ |
| BOOL file_write(struct cab_file *fi, cab_UBYTE *buf, cab_off_t length) |
| { |
| DWORD bytes_written; |
| |
| TRACE("(fi == ^%p, buf == ^%p, length == %u)\n", fi, buf, length); |
| |
| if ((!WriteFile( fi->fh, (LPCVOID) buf, length, &bytes_written, FALSE) || |
| (bytes_written != length))) { |
| ERR("Error writing file: %s\n", debugstr_a(fi->filename)); |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| |
| /******************************************************************* |
| * cabinet_skip (internal) |
| * |
| * advance the file pointer associated with the cab structure |
| * by distance bytes |
| */ |
| void cabinet_skip(struct cabinet *cab, cab_off_t distance) |
| { |
| TRACE("(cab == ^%p, distance == %u)\n", cab, distance); |
| if (SetFilePointer(cab->fh, distance, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER) { |
| if (distance != INVALID_SET_FILE_POINTER) |
| ERR("%s\n", debugstr_a(cab->filename)); |
| } |
| } |
| |
| /******************************************************************* |
| * cabinet_seek (internal) |
| * |
| * seek to the specified absolute offset in a cab |
| */ |
| void cabinet_seek(struct cabinet *cab, cab_off_t offset) { |
| TRACE("(cab == ^%p, offset == %u)\n", cab, offset); |
| if (SetFilePointer(cab->fh, offset, NULL, FILE_BEGIN) != offset) |
| ERR("%s seek failure\n", debugstr_a(cab->filename)); |
| } |
| |
| /******************************************************************* |
| * cabinet_getoffset (internal) |
| * |
| * returns the file pointer position of a cab |
| */ |
| cab_off_t cabinet_getoffset(struct cabinet *cab) |
| { |
| return SetFilePointer(cab->fh, 0, NULL, FILE_CURRENT); |
| } |
| |
| /******************************************************************* |
| * cabinet_read (internal) |
| * |
| * read data from a cabinet, returns success |
| */ |
| BOOL cabinet_read(struct cabinet *cab, cab_UBYTE *buf, cab_off_t length) |
| { |
| DWORD bytes_read; |
| cab_off_t avail = cab->filelen - cabinet_getoffset(cab); |
| |
| TRACE("(cab == ^%p, buf == ^%p, length == %u)\n", cab, buf, length); |
| |
| if (length > avail) { |
| WARN("%s: WARNING; cabinet is truncated\n", debugstr_a(cab->filename)); |
| length = avail; |
| } |
| |
| if (! ReadFile( cab->fh, (LPVOID) buf, length, &bytes_read, NULL )) { |
| ERR("%s read error\n", debugstr_a(cab->filename)); |
| return FALSE; |
| } else if (bytes_read != length) { |
| ERR("%s read size mismatch\n", debugstr_a(cab->filename)); |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /********************************************************************** |
| * cabinet_read_string (internal) |
| * |
| * allocate and read an aribitrarily long string from the cabinet |
| */ |
| char *cabinet_read_string(struct cabinet *cab) |
| { |
| cab_off_t len=256, base = cabinet_getoffset(cab), maxlen = cab->filelen - base; |
| BOOL ok = FALSE; |
| unsigned int i; |
| cab_UBYTE *buf = NULL; |
| |
| TRACE("(cab == ^%p)\n", cab); |
| |
| do { |
| if (len > maxlen) len = maxlen; |
| if (!(buf = realloc(buf, (size_t) len))) break; |
| if (!cabinet_read(cab, buf, (size_t) len)) break; |
| |
| /* search for a null terminator in what we've just read */ |
| for (i=0; i < len; i++) { |
| if (!buf[i]) {ok=TRUE; break;} |
| } |
| |
| if (!ok) { |
| if (len == maxlen) { |
| ERR("%s: WARNING; cabinet is truncated\n", debugstr_a(cab->filename)); |
| break; |
| } |
| len += 256; |
| cabinet_seek(cab, base); |
| } |
| } while (!ok); |
| |
| if (!ok) { |
| if (buf) |
| free(buf); |
| else |
| ERR("out of memory!\n"); |
| return NULL; |
| } |
| |
| /* otherwise, set the stream to just after the string and return */ |
| cabinet_seek(cab, base + ((cab_off_t) strlen((char *) buf)) + 1); |
| |
| return (char *) buf; |
| } |
| |
| /****************************************************************** |
| * cabinet_read_entries (internal) |
| * |
| * reads the header and all folder and file entries in this cabinet |
| */ |
| BOOL cabinet_read_entries(struct cabinet *cab) |
| { |
| int num_folders, num_files, header_resv, folder_resv = 0, i; |
| struct cab_folder *fol, *linkfol = NULL; |
| struct cab_file *file, *linkfile = NULL; |
| cab_off_t base_offset; |
| cab_UBYTE buf[64]; |
| |
| TRACE("(cab == ^%p)\n", cab); |
| |
| /* read in the CFHEADER */ |
| base_offset = cabinet_getoffset(cab); |
| if (!cabinet_read(cab, buf, cfhead_SIZEOF)) { |
| return FALSE; |
| } |
| |
| /* check basic MSCF signature */ |
| if (EndGetI32(buf+cfhead_Signature) != 0x4643534d) { |
| ERR("%s: not a Microsoft cabinet file\n", debugstr_a(cab->filename)); |
| return FALSE; |
| } |
| |
| /* get the number of folders */ |
| num_folders = EndGetI16(buf+cfhead_NumFolders); |
| if (num_folders == 0) { |
| ERR("%s: no folders in cabinet\n", debugstr_a(cab->filename)); |
| return FALSE; |
| } |
| |
| /* get the number of files */ |
| num_files = EndGetI16(buf+cfhead_NumFiles); |
| if (num_files == 0) { |
| ERR("%s: no files in cabinet\n", debugstr_a(cab->filename)); |
| return FALSE; |
| } |
| |
| /* just check the header revision */ |
| if ((buf[cfhead_MajorVersion] > 1) || |
| (buf[cfhead_MajorVersion] == 1 && buf[cfhead_MinorVersion] > 3)) |
| { |
| WARN("%s: WARNING; cabinet format version > 1.3\n", debugstr_a(cab->filename)); |
| } |
| |
| /* read the reserved-sizes part of header, if present */ |
| cab->flags = EndGetI16(buf+cfhead_Flags); |
| if (cab->flags & cfheadRESERVE_PRESENT) { |
| if (!cabinet_read(cab, buf, cfheadext_SIZEOF)) return FALSE; |
| header_resv = EndGetI16(buf+cfheadext_HeaderReserved); |
| folder_resv = buf[cfheadext_FolderReserved]; |
| cab->block_resv = buf[cfheadext_DataReserved]; |
| |
| if (header_resv > 60000) { |
| WARN("%s: WARNING; header reserved space > 60000\n", debugstr_a(cab->filename)); |
| } |
| |
| /* skip the reserved header */ |
| if (header_resv) |
| if (SetFilePointer(cab->fh, (cab_off_t) header_resv, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER) |
| ERR("seek failure: %s\n", debugstr_a(cab->filename)); |
| } |
| |
| if (cab->flags & cfheadPREV_CABINET) { |
| cab->prevname = cabinet_read_string(cab); |
| if (!cab->prevname) return FALSE; |
| cab->previnfo = cabinet_read_string(cab); |
| } |
| |
| if (cab->flags & cfheadNEXT_CABINET) { |
| cab->nextname = cabinet_read_string(cab); |
| if (!cab->nextname) return FALSE; |
| cab->nextinfo = cabinet_read_string(cab); |
| } |
| |
| /* read folders */ |
| for (i = 0; i < num_folders; i++) { |
| if (!cabinet_read(cab, buf, cffold_SIZEOF)) return FALSE; |
| if (folder_resv) cabinet_skip(cab, folder_resv); |
| |
| fol = (struct cab_folder *) calloc(1, sizeof(struct cab_folder)); |
| if (!fol) { |
| ERR("out of memory!\n"); |
| return FALSE; |
| } |
| |
| fol->cab[0] = cab; |
| fol->offset[0] = base_offset + (cab_off_t) EndGetI32(buf+cffold_DataOffset); |
| fol->num_blocks = EndGetI16(buf+cffold_NumBlocks); |
| fol->comp_type = EndGetI16(buf+cffold_CompType); |
| |
| if (!linkfol) |
| cab->folders = fol; |
| else |
| linkfol->next = fol; |
| |
| linkfol = fol; |
| } |
| |
| /* read files */ |
| for (i = 0; i < num_files; i++) { |
| if (!cabinet_read(cab, buf, cffile_SIZEOF)) |
| return FALSE; |
| |
| file = (struct cab_file *) calloc(1, sizeof(struct cab_file)); |
| if (!file) { |
| ERR("out of memory!\n"); |
| return FALSE; |
| } |
| |
| file->length = EndGetI32(buf+cffile_UncompressedSize); |
| file->offset = EndGetI32(buf+cffile_FolderOffset); |
| file->index = EndGetI16(buf+cffile_FolderIndex); |
| file->time = EndGetI16(buf+cffile_Time); |
| file->date = EndGetI16(buf+cffile_Date); |
| file->attribs = EndGetI16(buf+cffile_Attribs); |
| file->filename = cabinet_read_string(cab); |
| |
| if (!file->filename) { |
| free(file); |
| return FALSE; |
| } |
| |
| if (!linkfile) |
| cab->files = file; |
| else |
| linkfile->next = file; |
| |
| linkfile = file; |
| } |
| return TRUE; |
| } |
| |
| /*********************************************************** |
| * load_cab_offset (internal) |
| * |
| * validates and reads file entries from a cabinet at offset [offset] in |
| * file [name]. Returns a cabinet structure if successful, or NULL |
| * otherwise. |
| */ |
| struct cabinet *load_cab_offset(LPCSTR name, cab_off_t offset) |
| { |
| struct cabinet *cab = (struct cabinet *) calloc(1, sizeof(struct cabinet)); |
| int ok; |
| |
| TRACE("(name == %s, offset == %u)\n", debugstr_a(name), offset); |
| |
| if (!cab) return NULL; |
| |
| cab->filename = name; |
| if ((ok = cabinet_open(cab))) { |
| cabinet_seek(cab, offset); |
| ok = cabinet_read_entries(cab); |
| cabinet_close(cab); |
| } |
| |
| if (ok) return cab; |
| free(cab); |
| return NULL; |
| } |
| |
| /* MSZIP decruncher */ |
| |
| /* Dirk Stoecker wrote the ZIP decoder, based on the InfoZip deflate code */ |
| |
| /******************************************************** |
| * Ziphuft_free (internal) |
| */ |
| void Ziphuft_free(struct Ziphuft *t) |
| { |
| register struct Ziphuft *p, *q; |
| |
| /* Go through linked list, freeing from the allocated (t[-1]) address. */ |
| p = t; |
| while (p != (struct Ziphuft *)NULL) |
| { |
| q = (--p)->v.t; |
| free(p); |
| p = q; |
| } |
| } |
| |
| /********************************************************* |
| * Ziphuft_build (internal) |
| */ |
| cab_LONG Ziphuft_build(cab_ULONG *b, cab_ULONG n, cab_ULONG s, cab_UWORD *d, cab_UWORD *e, |
| struct Ziphuft **t, cab_LONG *m, cab_decomp_state *decomp_state) |
| { |
| cab_ULONG a; /* counter for codes of length k */ |
| cab_ULONG el; /* length of EOB code (value 256) */ |
| cab_ULONG f; /* i repeats in table every f entries */ |
| cab_LONG g; /* maximum code length */ |
| cab_LONG h; /* table level */ |
| register cab_ULONG i; /* counter, current code */ |
| register cab_ULONG j; /* counter */ |
| register cab_LONG k; /* number of bits in current code */ |
| cab_LONG *l; /* stack of bits per table */ |
| register cab_ULONG *p; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */ |
| register struct Ziphuft *q; /* points to current table */ |
| struct Ziphuft r; /* table entry for structure assignment */ |
| register cab_LONG w; /* bits before this table == (l * h) */ |
| cab_ULONG *xp; /* pointer into x */ |
| cab_LONG y; /* number of dummy codes added */ |
| cab_ULONG z; /* number of entries in current table */ |
| |
| l = ZIP(lx)+1; |
| |
| /* Generate counts for each bit length */ |
| el = n > 256 ? b[256] : ZIPBMAX; /* set length of EOB code, if any */ |
| |
| for(i = 0; i < ZIPBMAX+1; ++i) |
| ZIP(c)[i] = 0; |
| p = b; i = n; |
| do |
| { |
| ZIP(c)[*p]++; p++; /* assume all entries <= ZIPBMAX */ |
| } while (--i); |
| if (ZIP(c)[0] == n) /* null input--all zero length codes */ |
| { |
| *t = (struct Ziphuft *)NULL; |
| *m = 0; |
| return 0; |
| } |
| |
| /* Find minimum and maximum length, bound *m by those */ |
| for (j = 1; j <= ZIPBMAX; j++) |
| if (ZIP(c)[j]) |
| break; |
| k = j; /* minimum code length */ |
| if ((cab_ULONG)*m < j) |
| *m = j; |
| for (i = ZIPBMAX; i; i--) |
| if (ZIP(c)[i]) |
| break; |
| g = i; /* maximum code length */ |
| if ((cab_ULONG)*m > i) |
| *m = i; |
| |
| /* Adjust last length count to fill out codes, if needed */ |
| for (y = 1 << j; j < i; j++, y <<= 1) |
| if ((y -= ZIP(c)[j]) < 0) |
| return 2; /* bad input: more codes than bits */ |
| if ((y -= ZIP(c)[i]) < 0) |
| return 2; |
| ZIP(c)[i] += y; |
| |
| /* Generate starting offsets LONGo the value table for each length */ |
| ZIP(x)[1] = j = 0; |
| p = ZIP(c) + 1; xp = ZIP(x) + 2; |
| while (--i) |
| { /* note that i == g from above */ |
| *xp++ = (j += *p++); |
| } |
| |
| /* Make a table of values in order of bit lengths */ |
| p = b; i = 0; |
| do{ |
| if ((j = *p++) != 0) |
| ZIP(v)[ZIP(x)[j]++] = i; |
| } while (++i < n); |
| |
| |
| /* Generate the Huffman codes and for each, make the table entries */ |
| ZIP(x)[0] = i = 0; /* first Huffman code is zero */ |
| p = ZIP(v); /* grab values in bit order */ |
| h = -1; /* no tables yet--level -1 */ |
| w = l[-1] = 0; /* no bits decoded yet */ |
| ZIP(u)[0] = (struct Ziphuft *)NULL; /* just to keep compilers happy */ |
| q = (struct Ziphuft *)NULL; /* ditto */ |
| z = 0; /* ditto */ |
| |
| /* go through the bit lengths (k already is bits in shortest code) */ |
| for (; k <= g; k++) |
| { |
| a = ZIP(c)[k]; |
| while (a--) |
| { |
| /* here i is the Huffman code of length k bits for value *p */ |
| /* make tables up to required level */ |
| while (k > w + l[h]) |
| { |
| w += l[h++]; /* add bits already decoded */ |
| |
| /* compute minimum size table less than or equal to *m bits */ |
| z = (z = g - w) > (cab_ULONG)*m ? *m : z; /* upper limit */ |
| if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ |
| { /* too few codes for k-w bit table */ |
| f -= a + 1; /* deduct codes from patterns left */ |
| xp = ZIP(c) + k; |
| while (++j < z) /* try smaller tables up to z bits */ |
| { |
| if ((f <<= 1) <= *++xp) |
| break; /* enough codes to use up j bits */ |
| f -= *xp; /* else deduct codes from patterns */ |
| } |
| } |
| if ((cab_ULONG)w + j > el && (cab_ULONG)w < el) |
| j = el - w; /* make EOB code end at table */ |
| z = 1 << j; /* table entries for j-bit table */ |
| l[h] = j; /* set table size in stack */ |
| |
| /* allocate and link in new table */ |
| if (!(q = (struct Ziphuft *) malloc((z + 1)*sizeof(struct Ziphuft)))) |
| { |
| if(h) |
| Ziphuft_free(ZIP(u)[0]); |
| return 3; /* not enough memory */ |
| } |
| *t = q + 1; /* link to list for Ziphuft_free() */ |
| *(t = &(q->v.t)) = (struct Ziphuft *)NULL; |
| ZIP(u)[h] = ++q; /* table starts after link */ |
| |
| /* connect to last table, if there is one */ |
| if (h) |
| { |
| ZIP(x)[h] = i; /* save pattern for backing up */ |
| r.b = (cab_UBYTE)l[h-1]; /* bits to dump before this table */ |
| r.e = (cab_UBYTE)(16 + j); /* bits in this table */ |
| r.v.t = q; /* pointer to this table */ |
| j = (i & ((1 << w) - 1)) >> (w - l[h-1]); |
| ZIP(u)[h-1][j] = r; /* connect to last table */ |
| } |
| } |
| |
| /* set up table entry in r */ |
| r.b = (cab_UBYTE)(k - w); |
| if (p >= ZIP(v) + n) |
| r.e = 99; /* out of values--invalid code */ |
| else if (*p < s) |
| { |
| r.e = (cab_UBYTE)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ |
| r.v.n = *p++; /* simple code is just the value */ |
| } |
| else |
| { |
| r.e = (cab_UBYTE)e[*p - s]; /* non-simple--look up in lists */ |
| r.v.n = d[*p++ - s]; |
| } |
| |
| /* fill code-like entries with r */ |
| f = 1 << (k - w); |
| for (j = i >> w; j < z; j += f) |
| q[j] = r; |
| |
| /* backwards increment the k-bit code i */ |
| for (j = 1 << (k - 1); i & j; j >>= 1) |
| i ^= j; |
| i ^= j; |
| |
| /* backup over finished tables */ |
| while ((i & ((1 << w) - 1)) != ZIP(x)[h]) |
| w -= l[--h]; /* don't need to update q */ |
| } |
| } |
| |
| /* return actual size of base table */ |
| *m = l[0]; |
| |
| /* Return true (1) if we were given an incomplete table */ |
| return y != 0 && g != 1; |
| } |
| |
| /********************************************************* |
| * Zipinflate_codes (internal) |
| */ |
| cab_LONG Zipinflate_codes(struct Ziphuft *tl, struct Ziphuft *td, |
| cab_LONG bl, cab_LONG bd, cab_decomp_state *decomp_state) |
| { |
| register cab_ULONG e; /* table entry flag/number of extra bits */ |
| cab_ULONG n, d; /* length and index for copy */ |
| cab_ULONG w; /* current window position */ |
| struct Ziphuft *t; /* pointer to table entry */ |
| cab_ULONG ml, md; /* masks for bl and bd bits */ |
| register cab_ULONG b; /* bit buffer */ |
| register cab_ULONG k; /* number of bits in bit buffer */ |
| |
| /* make local copies of globals */ |
| b = ZIP(bb); /* initialize bit buffer */ |
| k = ZIP(bk); |
| w = ZIP(window_posn); /* initialize window position */ |
| |
| /* inflate the coded data */ |
| ml = Zipmask[bl]; /* precompute masks for speed */ |
| md = Zipmask[bd]; |
| |
| for(;;) |
| { |
| ZIPNEEDBITS((cab_ULONG)bl) |
| if((e = (t = tl + ((cab_ULONG)b & ml))->e) > 16) |
| do |
| { |
| if (e == 99) |
| return 1; |
| ZIPDUMPBITS(t->b) |
| e -= 16; |
| ZIPNEEDBITS(e) |
| } while ((e = (t = t->v.t + ((cab_ULONG)b & Zipmask[e]))->e) > 16); |
| ZIPDUMPBITS(t->b) |
| if (e == 16) /* then it's a literal */ |
| CAB(outbuf)[w++] = (cab_UBYTE)t->v.n; |
| else /* it's an EOB or a length */ |
| { |
| /* exit if end of block */ |
| if(e == 15) |
| break; |
| |
| /* get length of block to copy */ |
| ZIPNEEDBITS(e) |
| n = t->v.n + ((cab_ULONG)b & Zipmask[e]); |
| ZIPDUMPBITS(e); |
| |
| /* decode distance of block to copy */ |
| ZIPNEEDBITS((cab_ULONG)bd) |
| if ((e = (t = td + ((cab_ULONG)b & md))->e) > 16) |
| do { |
| if (e == 99) |
| return 1; |
| ZIPDUMPBITS(t->b) |
| e -= 16; |
| ZIPNEEDBITS(e) |
| } while ((e = (t = t->v.t + ((cab_ULONG)b & Zipmask[e]))->e) > 16); |
| ZIPDUMPBITS(t->b) |
| ZIPNEEDBITS(e) |
| d = w - t->v.n - ((cab_ULONG)b & Zipmask[e]); |
| ZIPDUMPBITS(e) |
| do |
| { |
| n -= (e = (e = ZIPWSIZE - ((d &= ZIPWSIZE-1) > w ? d : w)) > n ?n:e); |
| do |
| { |
| CAB(outbuf)[w++] = CAB(outbuf)[d++]; |
| } while (--e); |
| } while (n); |
| } |
| } |
| |
| /* restore the globals from the locals */ |
| ZIP(window_posn) = w; /* restore global window pointer */ |
| ZIP(bb) = b; /* restore global bit buffer */ |
| ZIP(bk) = k; |
| |
| /* done */ |
| return 0; |
| } |
| |
| /*********************************************************** |
| * Zipinflate_stored (internal) |
| */ |
| cab_LONG Zipinflate_stored(cab_decomp_state *decomp_state) |
| /* "decompress" an inflated type 0 (stored) block. */ |
| { |
| cab_ULONG n; /* number of bytes in block */ |
| cab_ULONG w; /* current window position */ |
| register cab_ULONG b; /* bit buffer */ |
| register cab_ULONG k; /* number of bits in bit buffer */ |
| |
| /* make local copies of globals */ |
| b = ZIP(bb); /* initialize bit buffer */ |
| k = ZIP(bk); |
| w = ZIP(window_posn); /* initialize window position */ |
| |
| /* go to byte boundary */ |
| n = k & 7; |
| ZIPDUMPBITS(n); |
| |
| /* get the length and its complement */ |
| ZIPNEEDBITS(16) |
| n = ((cab_ULONG)b & 0xffff); |
| ZIPDUMPBITS(16) |
| ZIPNEEDBITS(16) |
| if (n != (cab_ULONG)((~b) & 0xffff)) |
| return 1; /* error in compressed data */ |
| ZIPDUMPBITS(16) |
| |
| /* read and output the compressed data */ |
| while(n--) |
| { |
| ZIPNEEDBITS(8) |
| CAB(outbuf)[w++] = (cab_UBYTE)b; |
| ZIPDUMPBITS(8) |
| } |
| |
| /* restore the globals from the locals */ |
| ZIP(window_posn) = w; /* restore global window pointer */ |
| ZIP(bb) = b; /* restore global bit buffer */ |
| ZIP(bk) = k; |
| return 0; |
| } |
| |
| /****************************************************** |
| * Zipinflate_fixed (internal) |
| */ |
| cab_LONG Zipinflate_fixed(cab_decomp_state *decomp_state) |
| { |
| struct Ziphuft *fixed_tl; |
| struct Ziphuft *fixed_td; |
| cab_LONG fixed_bl, fixed_bd; |
| cab_LONG i; /* temporary variable */ |
| cab_ULONG *l; |
| |
| l = ZIP(ll); |
| |
| /* literal table */ |
| for(i = 0; i < 144; i++) |
| l[i] = 8; |
| for(; i < 256; i++) |
| l[i] = 9; |
| for(; i < 280; i++) |
| l[i] = 7; |
| for(; i < 288; i++) /* make a complete, but wrong code set */ |
| l[i] = 8; |
| fixed_bl = 7; |
| if((i = Ziphuft_build(l, 288, 257, (cab_UWORD *) Zipcplens, |
| (cab_UWORD *) Zipcplext, &fixed_tl, &fixed_bl, decomp_state))) |
| return i; |
| |
| /* distance table */ |
| for(i = 0; i < 30; i++) /* make an incomplete code set */ |
| l[i] = 5; |
| fixed_bd = 5; |
| if((i = Ziphuft_build(l, 30, 0, (cab_UWORD *) Zipcpdist, (cab_UWORD *) Zipcpdext, |
| &fixed_td, &fixed_bd, decomp_state)) > 1) |
| { |
| Ziphuft_free(fixed_tl); |
| return i; |
| } |
| |
| /* decompress until an end-of-block code */ |
| i = Zipinflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd, decomp_state); |
| |
| Ziphuft_free(fixed_td); |
| Ziphuft_free(fixed_tl); |
| return i; |
| } |
| |
| /************************************************************** |
| * Zipinflate_dynamic (internal) |
| */ |
| cab_LONG Zipinflate_dynamic(cab_decomp_state *decomp_state) |
| /* decompress an inflated type 2 (dynamic Huffman codes) block. */ |
| { |
| cab_LONG i; /* temporary variables */ |
| cab_ULONG j; |
| cab_ULONG *ll; |
| cab_ULONG l; /* last length */ |
| cab_ULONG m; /* mask for bit lengths table */ |
| cab_ULONG n; /* number of lengths to get */ |
| struct Ziphuft *tl; /* literal/length code table */ |
| struct Ziphuft *td; /* distance code table */ |
| cab_LONG bl; /* lookup bits for tl */ |
| cab_LONG bd; /* lookup bits for td */ |
| cab_ULONG nb; /* number of bit length codes */ |
| cab_ULONG nl; /* number of literal/length codes */ |
| cab_ULONG nd; /* number of distance codes */ |
| register cab_ULONG b; /* bit buffer */ |
| register cab_ULONG k; /* number of bits in bit buffer */ |
| |
| /* make local bit buffer */ |
| b = ZIP(bb); |
| k = ZIP(bk); |
| ll = ZIP(ll); |
| |
| /* read in table lengths */ |
| ZIPNEEDBITS(5) |
| nl = 257 + ((cab_ULONG)b & 0x1f); /* number of literal/length codes */ |
| ZIPDUMPBITS(5) |
| ZIPNEEDBITS(5) |
| nd = 1 + ((cab_ULONG)b & 0x1f); /* number of distance codes */ |
| ZIPDUMPBITS(5) |
| ZIPNEEDBITS(4) |
| nb = 4 + ((cab_ULONG)b & 0xf); /* number of bit length codes */ |
| ZIPDUMPBITS(4) |
| if(nl > 288 || nd > 32) |
| return 1; /* bad lengths */ |
| |
| /* read in bit-length-code lengths */ |
| for(j = 0; j < nb; j++) |
| { |
| ZIPNEEDBITS(3) |
| ll[Zipborder[j]] = (cab_ULONG)b & 7; |
| ZIPDUMPBITS(3) |
| } |
| for(; j < 19; j++) |
| ll[Zipborder[j]] = 0; |
| |
| /* build decoding table for trees--single level, 7 bit lookup */ |
| bl = 7; |
| if((i = Ziphuft_build(ll, 19, 19, NULL, NULL, &tl, &bl, decomp_state)) != 0) |
| { |
| if(i == 1) |
| Ziphuft_free(tl); |
| return i; /* incomplete code set */ |
| } |
| |
| /* read in literal and distance code lengths */ |
| n = nl + nd; |
| m = Zipmask[bl]; |
| i = l = 0; |
| while((cab_ULONG)i < n) |
| { |
| ZIPNEEDBITS((cab_ULONG)bl) |
| j = (td = tl + ((cab_ULONG)b & m))->b; |
| ZIPDUMPBITS(j) |
| j = td->v.n; |
| if (j < 16) /* length of code in bits (0..15) */ |
| ll[i++] = l = j; /* save last length in l */ |
| else if (j == 16) /* repeat last length 3 to 6 times */ |
| { |
| ZIPNEEDBITS(2) |
| j = 3 + ((cab_ULONG)b & 3); |
| ZIPDUMPBITS(2) |
| if((cab_ULONG)i + j > n) |
| return 1; |
| while (j--) |
| ll[i++] = l; |
| } |
| else if (j == 17) /* 3 to 10 zero length codes */ |
| { |
| ZIPNEEDBITS(3) |
| j = 3 + ((cab_ULONG)b & 7); |
| ZIPDUMPBITS(3) |
| if ((cab_ULONG)i + j > n) |
| return 1; |
| while (j--) |
| ll[i++] = 0; |
| l = 0; |
| } |
| else /* j == 18: 11 to 138 zero length codes */ |
| { |
| ZIPNEEDBITS(7) |
| j = 11 + ((cab_ULONG)b & 0x7f); |
| ZIPDUMPBITS(7) |
| if ((cab_ULONG)i + j > n) |
| return 1; |
| while (j--) |
| ll[i++] = 0; |
| l = 0; |
| } |
| } |
| |
| /* free decoding table for trees */ |
| Ziphuft_free(tl); |
| |
| /* restore the global bit buffer */ |
| ZIP(bb) = b; |
| ZIP(bk) = k; |
| |
| /* build the decoding tables for literal/length and distance codes */ |
| bl = ZIPLBITS; |
| if((i = Ziphuft_build(ll, nl, 257, (cab_UWORD *) Zipcplens, (cab_UWORD *) Zipcplext, |
| &tl, &bl, decomp_state)) != 0) |
| { |
| if(i == 1) |
| Ziphuft_free(tl); |
| return i; /* incomplete code set */ |
| } |
| bd = ZIPDBITS; |
| Ziphuft_build(ll + nl, nd, 0, (cab_UWORD *) Zipcpdist, (cab_UWORD *) Zipcpdext, |
| &td, &bd, decomp_state); |
| |
| /* decompress until an end-of-block code */ |
| if(Zipinflate_codes(tl, td, bl, bd, decomp_state)) |
| return 1; |
| |
| /* free the decoding tables, return */ |
| Ziphuft_free(tl); |
| Ziphuft_free(td); |
| return 0; |
| } |
| |
| /***************************************************** |
| * Zipinflate_block (internal) |
| */ |
| cab_LONG Zipinflate_block(cab_LONG *e, cab_decomp_state *decomp_state) /* e == last block flag */ |
| { /* decompress an inflated block */ |
| cab_ULONG t; /* block type */ |
| register cab_ULONG b; /* bit buffer */ |
| register cab_ULONG k; /* number of bits in bit buffer */ |
| |
| /* make local bit buffer */ |
| b = ZIP(bb); |
| k = ZIP(bk); |
| |
| /* read in last block bit */ |
| ZIPNEEDBITS(1) |
| *e = (cab_LONG)b & 1; |
| ZIPDUMPBITS(1) |
| |
| /* read in block type */ |
| ZIPNEEDBITS(2) |
| t = (cab_ULONG)b & 3; |
| ZIPDUMPBITS(2) |
| |
| /* restore the global bit buffer */ |
| ZIP(bb) = b; |
| ZIP(bk) = k; |
| |
| /* inflate that block type */ |
| if(t == 2) |
| return Zipinflate_dynamic(decomp_state); |
| if(t == 0) |
| return Zipinflate_stored(decomp_state); |
| if(t == 1) |
| return Zipinflate_fixed(decomp_state); |
| /* bad block type */ |
| return 2; |
| } |
| |
| /**************************************************** |
| * ZIPdecompress (internal) |
| */ |
| int ZIPdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) |
| { |
| cab_LONG e; /* last block flag */ |
| |
| TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); |
| |
| ZIP(inpos) = CAB(inbuf); |
| ZIP(bb) = ZIP(bk) = ZIP(window_posn) = 0; |
| if(outlen > ZIPWSIZE) |
| return DECR_DATAFORMAT; |
| |
| /* CK = Chris Kirmse, official Microsoft purloiner */ |
| if(ZIP(inpos)[0] != 0x43 || ZIP(inpos)[1] != 0x4B) |
| return DECR_ILLEGALDATA; |
| ZIP(inpos) += 2; |
| |
| do |
| { |
| if(Zipinflate_block(&e, decomp_state)) |
| return DECR_ILLEGALDATA; |
| } while(!e); |
| |
| /* return success */ |
| return DECR_OK; |
| } |
| |
| /* Quantum decruncher */ |
| |
| /* This decruncher was researched and implemented by Matthew Russoto. */ |
| /* It has since been tidied up by Stuart Caie */ |
| |
| /****************************************************************** |
| * QTMinitmodel (internal) |
| * |
| * Initialise a model which decodes symbols from [s] to [s]+[n]-1 |
| */ |
| void QTMinitmodel(struct QTMmodel *m, struct QTMmodelsym *sym, int n, int s) { |
| int i; |
| m->shiftsleft = 4; |
| m->entries = n; |
| m->syms = sym; |
| memset(m->tabloc, 0xFF, sizeof(m->tabloc)); /* clear out look-up table */ |
| for (i = 0; i < n; i++) { |
| m->tabloc[i+s] = i; /* set up a look-up entry for symbol */ |
| m->syms[i].sym = i+s; /* actual symbol */ |
| m->syms[i].cumfreq = n-i; /* current frequency of that symbol */ |
| } |
| m->syms[n].cumfreq = 0; |
| } |
| |
| /****************************************************************** |
| * QTMinit (internal) |
| */ |
| int QTMinit(int window, int level, cab_decomp_state *decomp_state) { |
| unsigned int wndsize = 1 << window; |
| int msz = window * 2, i; |
| cab_ULONG j; |
| |
| /* QTM supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */ |
| /* if a previously allocated window is big enough, keep it */ |
| if (window < 10 || window > 21) return DECR_DATAFORMAT; |
| if (QTM(actual_size) < wndsize) { |
| if (QTM(window)) free(QTM(window)); |
| QTM(window) = NULL; |
| } |
| if (!QTM(window)) { |
| if (!(QTM(window) = malloc(wndsize))) return DECR_NOMEMORY; |
| QTM(actual_size) = wndsize; |
| } |
| QTM(window_size) = wndsize; |
| QTM(window_posn) = 0; |
| |
| /* initialise static slot/extrabits tables */ |
| for (i = 0, j = 0; i < 27; i++) { |
| CAB(q_length_extra)[i] = (i == 26) ? 0 : (i < 2 ? 0 : i - 2) >> 2; |
| CAB(q_length_base)[i] = j; j += 1 << ((i == 26) ? 5 : CAB(q_length_extra)[i]); |
| } |
| for (i = 0, j = 0; i < 42; i++) { |
| CAB(q_extra_bits)[i] = (i < 2 ? 0 : i-2) >> 1; |
| CAB(q_position_base)[i] = j; j += 1 << CAB(q_extra_bits)[i]; |
| } |
| |
| /* initialise arithmetic coding models */ |
| |
| QTMinitmodel(&QTM(model7), &QTM(m7sym)[0], 7, 0); |
| |
| QTMinitmodel(&QTM(model00), &QTM(m00sym)[0], 0x40, 0x00); |
| QTMinitmodel(&QTM(model40), &QTM(m40sym)[0], 0x40, 0x40); |
| QTMinitmodel(&QTM(model80), &QTM(m80sym)[0], 0x40, 0x80); |
| QTMinitmodel(&QTM(modelC0), &QTM(mC0sym)[0], 0x40, 0xC0); |
| |
| /* model 4 depends on table size, ranges from 20 to 24 */ |
| QTMinitmodel(&QTM(model4), &QTM(m4sym)[0], (msz < 24) ? msz : 24, 0); |
| /* model 5 depends on table size, ranges from 20 to 36 */ |
| QTMinitmodel(&QTM(model5), &QTM(m5sym)[0], (msz < 36) ? msz : 36, 0); |
| /* model 6pos depends on table size, ranges from 20 to 42 */ |
| QTMinitmodel(&QTM(model6pos), &QTM(m6psym)[0], msz, 0); |
| QTMinitmodel(&QTM(model6len), &QTM(m6lsym)[0], 27, 0); |
| |
| return DECR_OK; |
| } |
| |
| /**************************************************************** |
| * QTMupdatemodel (internal) |
| */ |
| void QTMupdatemodel(struct QTMmodel *model, int sym) { |
| struct QTMmodelsym temp; |
| int i, j; |
| |
| for (i = 0; i < sym; i++) model->syms[i].cumfreq += 8; |
| |
| if (model->syms[0].cumfreq > 3800) { |
| if (--model->shiftsleft) { |
| for (i = model->entries - 1; i >= 0; i--) { |
| /* -1, not -2; the 0 entry saves this */ |
| model->syms[i].cumfreq >>= 1; |
| if (model->syms[i].cumfreq <= model->syms[i+1].cumfreq) { |
| model->syms[i].cumfreq = model->syms[i+1].cumfreq + 1; |
| } |
| } |
| } |
| else { |
| model->shiftsleft = 50; |
| for (i = 0; i < model->entries ; i++) { |
| /* no -1, want to include the 0 entry */ |
| /* this converts cumfreqs into frequencies, then shifts right */ |
| model->syms[i].cumfreq -= model->syms[i+1].cumfreq; |
| model->syms[i].cumfreq++; /* avoid losing things entirely */ |
| model->syms[i].cumfreq >>= 1; |
| } |
| |
| /* now sort by frequencies, decreasing order -- this must be an |
| * inplace selection sort, or a sort with the same (in)stability |
| * characteristics |
| */ |
| for (i = 0; i < model->entries - 1; i++) { |
| for (j = i + 1; j < model->entries; j++) { |
| if (model->syms[i].cumfreq < model->syms[j].cumfreq) { |
| temp = model->syms[i]; |
| model->syms[i] = model->syms[j]; |
| model->syms[j] = temp; |
| } |
| } |
| } |
| |
| /* then convert frequencies back to cumfreq */ |
| for (i = model->entries - 1; i >= 0; i--) { |
| model->syms[i].cumfreq += model->syms[i+1].cumfreq; |
| } |
| /* then update the other part of the table */ |
| for (i = 0; i < model->entries; i++) { |
| model->tabloc[model->syms[i].sym] = i; |
| } |
| } |
| } |
| } |
| |
| /******************************************************************* |
| * QTMdecompress (internal) |
| */ |
| int QTMdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) |
| { |
| cab_UBYTE *inpos = CAB(inbuf); |
| cab_UBYTE *window = QTM(window); |
| cab_UBYTE *runsrc, *rundest; |
| |
| cab_ULONG window_posn = QTM(window_posn); |
| cab_ULONG window_size = QTM(window_size); |
| |
| /* used by bitstream macros */ |
| register int bitsleft, bitrun, bitsneed; |
| register cab_ULONG bitbuf; |
| |
| /* used by GET_SYMBOL */ |
| cab_ULONG range; |
| cab_UWORD symf; |
| int i; |
| |
| int extra, togo = outlen, match_length = 0, copy_length; |
| cab_UBYTE selector, sym; |
| cab_ULONG match_offset = 0; |
| |
| cab_UWORD H = 0xFFFF, L = 0, C; |
| |
| TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); |
| |
| /* read initial value of C */ |
| Q_INIT_BITSTREAM; |
| Q_READ_BITS(C, 16); |
| |
| /* apply 2^x-1 mask */ |
| window_posn &= window_size - 1; |
| /* runs can't straddle the window wraparound */ |
| if ((window_posn + togo) > window_size) { |
| TRACE("straddled run\n"); |
| return DECR_DATAFORMAT; |
| } |
| |
| while (togo > 0) { |
| GET_SYMBOL(model7, selector); |
| switch (selector) { |
| case 0: |
| GET_SYMBOL(model00, sym); window[window_posn++] = sym; togo--; |
| break; |
| case 1: |
| GET_SYMBOL(model40, sym); window[window_posn++] = sym; togo--; |
| break; |
| case 2: |
| GET_SYMBOL(model80, sym); window[window_posn++] = sym; togo--; |
| break; |
| case 3: |
| GET_SYMBOL(modelC0, sym); window[window_posn++] = sym; togo--; |
| break; |
| |
| case 4: |
| /* selector 4 = fixed length of 3 */ |
| GET_SYMBOL(model4, sym); |
| Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); |
| match_offset = CAB(q_position_base)[sym] + extra + 1; |
| match_length = 3; |
| break; |
| |
| case 5: |
| /* selector 5 = fixed length of 4 */ |
| GET_SYMBOL(model5, sym); |
| Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); |
| match_offset = CAB(q_position_base)[sym] + extra + 1; |
| match_length = 4; |
| break; |
| |
| case 6: |
| /* selector 6 = variable length */ |
| GET_SYMBOL(model6len, sym); |
| Q_READ_BITS(extra, CAB(q_length_extra)[sym]); |
| match_length = CAB(q_length_base)[sym] + extra + 5; |
| GET_SYMBOL(model6pos, sym); |
| Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); |
| match_offset = CAB(q_position_base)[sym] + extra + 1; |
| break; |
| |
| default: |
| TRACE("Selector is bogus\n"); |
| return DECR_ILLEGALDATA; |
| } |
| |
| /* if this is a match */ |
| if (selector >= 4) { |
| rundest = window + window_posn; |
| togo -= match_length; |
| |
| /* copy any wrapped around source data */ |
| if (window_posn >= match_offset) { |
| /* no wrap */ |
| runsrc = rundest - match_offset; |
| } else { |
| runsrc = rundest + (window_size - match_offset); |
| copy_length = match_offset - window_posn; |
| if (copy_length < match_length) { |
| match_length -= copy_length; |
| window_posn += copy_length; |
| while (copy_length-- > 0) *rundest++ = *runsrc++; |
| runsrc = window; |
| } |
| } |
| window_posn += match_length; |
| |
| /* copy match data - no worries about destination wraps */ |
| while (match_length-- > 0) *rundest++ = *runsrc++; |
| } |
| } /* while (togo > 0) */ |
| |
| if (togo != 0) { |
| TRACE("Frame overflow, this_run = %d\n", togo); |
| return DECR_ILLEGALDATA; |
| } |
| |
| memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) - |
| outlen, outlen); |
| |
| QTM(window_posn) = window_posn; |
| return DECR_OK; |
| } |
| |
| /* LZX decruncher */ |
| |
| /* Microsoft's LZX document and their implementation of the |
| * com.ms.util.cab Java package do not concur. |
| * |
| * In the LZX document, there is a table showing the correlation between |
| * window size and the number of position slots. It states that the 1MB |
| * window = 40 slots and the 2MB window = 42 slots. In the implementation, |
| * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the |
| * first slot whose position base is equal to or more than the required |
| * window size'. This would explain why other tables in the document refer |
| * to 50 slots rather than 42. |
| * |
| * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode |
| * is not defined in the specification. |
| * |
| * The LZX document does not state the uncompressed block has an |
| * uncompressed length field. Where does this length field come from, so |
| * we can know how large the block is? The implementation has it as the 24 |
| * bits following after the 3 blocktype bits, before the alignment |
| * padding. |
| * |
| * The LZX document states that aligned offset blocks have their aligned |
| * offset huffman tree AFTER the main and length trees. The implementation |
| * suggests that the aligned offset tree is BEFORE the main and length |
| * trees. |
| * |
| * The LZX document decoding algorithm states that, in an aligned offset |
| * block, if an extra_bits value is 1, 2 or 3, then that number of bits |
| * should be read and the result added to the match offset. This is |
| * correct for 1 and 2, but not 3, where just a huffman symbol (using the |
| * aligned tree) should be read. |
| * |
| * Regarding the E8 preprocessing, the LZX document states 'No translation |
| * may be performed on the last 6 bytes of the input block'. This is |
| * correct. However, the pseudocode provided checks for the *E8 leader* |
| * up to the last 6 bytes. If the leader appears between -10 and -7 bytes |
| * from the end, this would cause the next four bytes to be modified, at |
| * least one of which would be in the last 6 bytes, which is not allowed |
| * according to the spec. |
| * |
| * The specification states that the huffman trees must always contain at |
| * least one element. However, many CAB files contain blocks where the |
| * length tree is completely empty (because there are no matches), and |
| * this is expected to succeed. |
| */ |
| |
| |
| /* LZX uses what it calls 'position slots' to represent match offsets. |
| * What this means is that a small 'position slot' number and a small |
| * offset from that slot are encoded instead of one large offset for |
| * every match. |
| * - lzx_position_base is an index to the position slot bases |
| * - lzx_extra_bits states how many bits of offset-from-base data is needed. |
| */ |
| |
| /************************************************************ |
| * LZXinit (internal) |
| */ |
| int LZXinit(int window, cab_decomp_state *decomp_state) { |
| cab_ULONG wndsize = 1 << window; |
| int i, j, posn_slots; |
| |
| /* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */ |
| /* if a previously allocated window is big enough, keep it */ |
| if (window < 15 || window > 21) return DECR_DATAFORMAT; |
| if (LZX(actual_size) < wndsize) { |
| if (LZX(window)) free(LZX(window)); |
| LZX(window) = NULL; |
| } |
| if (!LZX(window)) { |
| if (!(LZX(window) = malloc(wndsize))) return DECR_NOMEMORY; |
| LZX(actual_size) = wndsize; |
| } |
| LZX(window_size) = wndsize; |
| |
| /* initialise static tables */ |
| for (i=0, j=0; i <= 50; i += 2) { |
| CAB(extra_bits)[i] = CAB(extra_bits)[i+1] = j; /* 0,0,0,0,1,1,2,2,3,3... */ |
| if ((i != 0) && (j < 17)) j++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */ |
| } |
| for (i=0, j=0; i <= 50; i++) { |
| CAB(lzx_position_base)[i] = j; /* 0,1,2,3,4,6,8,12,16,24,32,... */ |
| j += 1 << CAB(extra_bits)[i]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */ |
| } |
| |
| /* calculate required position slots */ |
| if (window == 20) posn_slots = 42; |
| else if (window == 21) posn_slots = 50; |
| else posn_slots = window << 1; |
| |
| /*posn_slots=i=0; while (i < wndsize) i += 1 << CAB(extra_bits)[posn_slots++]; */ |
| |
| LZX(R0) = LZX(R1) = LZX(R2) = 1; |
| LZX(main_elements) = LZX_NUM_CHARS + (posn_slots << 3); |
| LZX(header_read) = 0; |
| LZX(frames_read) = 0; |
| LZX(block_remaining) = 0; |
| LZX(block_type) = LZX_BLOCKTYPE_INVALID; |
| LZX(intel_curpos) = 0; |
| LZX(intel_started) = 0; |
| LZX(window_posn) = 0; |
| |
| /* initialise tables to 0 (because deltas will be applied to them) */ |
| for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) LZX(MAINTREE_len)[i] = 0; |
| for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) LZX(LENGTH_len)[i] = 0; |
| |
| return DECR_OK; |
| } |
| |
| /************************************************************************* |
| * make_decode_table (internal) |
| * |
| * This function was coded by David Tritscher. It builds a fast huffman |
| * decoding table out of just a canonical huffman code lengths table. |
| * |
| * PARAMS |
| * nsyms: total number of symbols in this huffman tree. |
| * nbits: any symbols with a code length of nbits or less can be decoded |
| * in one lookup of the table. |
| * length: A table to get code lengths from [0 to syms-1] |
| * table: The table to fill up with decoded symbols and pointers. |
| * |
| * RETURNS |
| * OK: 0 |
| * error: 1 |
| */ |
| int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, cab_UBYTE *length, cab_UWORD *table) { |
| register cab_UWORD sym; |
| register cab_ULONG leaf; |
| register cab_UBYTE bit_num = 1; |
| cab_ULONG fill; |
| cab_ULONG pos = 0; /* the current position in the decode table */ |
| cab_ULONG table_mask = 1 << nbits; |
| cab_ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */ |
| cab_ULONG next_symbol = bit_mask; /* base of allocation for long codes */ |
| |
| /* fill entries for codes short enough for a direct mapping */ |
| while (bit_num <= nbits) { |
| for (sym = 0; sym < nsyms; sym++) { |
| if (length[sym] == bit_num) { |
| leaf = pos; |
| |
| if((pos += bit_mask) > table_mask) return 1; /* table overrun */ |
| |
| /* fill all possible lookups of this symbol with the symbol itself */ |
| fill = bit_mask; |
| while (fill-- > 0) table[leaf++] = sym; |
| } |
| } |
| bit_mask >>= 1; |
| bit_num++; |
| } |
| |
| /* if there are any codes longer than nbits */ |
| if (pos != table_mask) { |
| /* clear the remainder of the table */ |
| for (sym = pos; sym < table_mask; sym++) table[sym] = 0; |
| |
| /* give ourselves room for codes to grow by up to 16 more bits */ |
| pos <<= 16; |
| table_mask <<= 16; |
| bit_mask = 1 << 15; |
| |
| while (bit_num <= 16) { |
| for (sym = 0; sym < nsyms; sym++) { |
| if (length[sym] == bit_num) { |
| leaf = pos >> 16; |
| for (fill = 0; fill < bit_num - nbits; fill++) { |
| /* if this path hasn't been taken yet, 'allocate' two entries */ |
| if (table[leaf] == 0) { |
| table[(next_symbol << 1)] = 0; |
| table[(next_symbol << 1) + 1] = 0; |
| table[leaf] = next_symbol++; |
| } |
| /* follow the path and select either left or right for next bit */ |
| leaf = table[leaf] << 1; |
| if ((pos >> (15-fill)) & 1) leaf++; |
| } |
| table[leaf] = sym; |
| |
| if ((pos += bit_mask) > table_mask) return 1; /* table overflow */ |
| } |
| } |
| bit_mask >>= 1; |
| bit_num++; |
| } |
| } |
| |
| /* full table? */ |
| if (pos == table_mask) return 0; |
| |
| /* either erroneous table, or all elements are 0 - let's find out. */ |
| for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1; |
| return 0; |
| } |
| |
| /************************************************************ |
| * lzx_read_lens (internal) |
| */ |
| int lzx_read_lens(cab_UBYTE *lens, cab_ULONG first, cab_ULONG last, struct lzx_bits *lb, |
| cab_decomp_state *decomp_state) { |
| cab_ULONG i,j, x,y; |
| int z; |
| |
| register cab_ULONG bitbuf = lb->bb; |
| register int bitsleft = lb->bl; |
| cab_UBYTE *inpos = lb->ip; |
| cab_UWORD *hufftbl; |
| |
| for (x = 0; x < 20; x++) { |
| READ_BITS(y, 4); |
| LENTABLE(PRETREE)[x] = y; |
| } |
| BUILD_TABLE(PRETREE); |
| |
| for (x = first; x < last; ) { |
| READ_HUFFSYM(PRETREE, z); |
| if (z == 17) { |
| READ_BITS(y, 4); y += 4; |
| while (y--) lens[x++] = 0; |
| } |
| else if (z == 18) { |
| READ_BITS(y, 5); y += 20; |
| while (y--) lens[x++] = 0; |
| } |
| else if (z == 19) { |
| READ_BITS(y, 1); y += 4; |
| READ_HUFFSYM(PRETREE, z); |
| z = lens[x] - z; if (z < 0) z += 17; |
| while (y--) lens[x++] = z; |
| } |
| else { |
| z = lens[x] - z; if (z < 0) z += 17; |
| lens[x++] = z; |
| } |
| } |
| |
| lb->bb = bitbuf; |
| lb->bl = bitsleft; |
| lb->ip = inpos; |
| return 0; |
| } |
| |
| /******************************************************* |
| * LZXdecompress (internal) |
| */ |
| int LZXdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) { |
| cab_UBYTE *inpos = CAB(inbuf); |
| cab_UBYTE *endinp = inpos + inlen; |
| cab_UBYTE *window = LZX(window); |
| cab_UBYTE *runsrc, *rundest; |
| cab_UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */ |
| |
| cab_ULONG window_posn = LZX(window_posn); |
| cab_ULONG window_size = LZX(window_size); |
| cab_ULONG R0 = LZX(R0); |
| cab_ULONG R1 = LZX(R1); |
| cab_ULONG R2 = LZX(R2); |
| |
| register cab_ULONG bitbuf; |
| register int bitsleft; |
| cab_ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */ |
| struct lzx_bits lb; /* used in READ_LENGTHS macro */ |
| |
| int togo = outlen, this_run, main_element, aligned_bits; |
| int match_length, copy_length, length_footer, extra, verbatim_bits; |
| |
| TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); |
| |
| INIT_BITSTREAM; |
| |
| /* read header if necessary */ |
| if (!LZX(header_read)) { |
| i = j = 0; |
| READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); } |
| LZX(intel_filesize) = (i << 16) | j; /* or 0 if not encoded */ |
| LZX(header_read) = 1; |
| } |
| |
| /* main decoding loop */ |
| while (togo > 0) { |
| /* last block finished, new block expected */ |
| if (LZX(block_remaining) == 0) { |
| if (LZX(block_type) == LZX_BLOCKTYPE_UNCOMPRESSED) { |
| if (LZX(block_length) & 1) inpos++; /* realign bitstream to word */ |
| INIT_BITSTREAM; |
| } |
| |
| READ_BITS(LZX(block_type), 3); |
| READ_BITS(i, 16); |
| READ_BITS(j, 8); |
| LZX(block_remaining) = LZX(block_length) = (i << 8) | j; |
| |
| switch (LZX(block_type)) { |
| case LZX_BLOCKTYPE_ALIGNED: |
| for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; } |
| BUILD_TABLE(ALIGNED); |
| /* rest of aligned header is same as verbatim */ |
| |
| case LZX_BLOCKTYPE_VERBATIM: |
| READ_LENGTHS(MAINTREE, 0, 256, lzx_read_lens); |
| READ_LENGTHS(MAINTREE, 256, LZX(main_elements), lzx_read_lens); |
| BUILD_TABLE(MAINTREE); |
| if (LENTABLE(MAINTREE)[0xE8] != 0) LZX(intel_started) = 1; |
| |
| READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS, lzx_read_lens); |
| BUILD_TABLE(LENGTH); |
| break; |
| |
| case LZX_BLOCKTYPE_UNCOMPRESSED: |
| LZX(intel_started) = 1; /* because we can't assume otherwise */ |
| ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */ |
| if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */ |
| R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; |
| R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; |
| R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; |
| break; |
| |
| default: |
| return DECR_ILLEGALDATA; |
| } |
| } |
| |
| /* buffer exhaustion check */ |
| if (inpos > endinp) { |
| /* it's possible to have a file where the next run is less than |
| * 16 bits in size. In this case, the READ_HUFFSYM() macro used |
| * in building the tables will exhaust the buffer, so we should |
| * allow for this, but not allow those accidentally read bits to |
| * be used (so we check that there are at least 16 bits |
| * remaining - in this boundary case they aren't really part of |
| * the compressed data) |
| */ |
| if (inpos > (endinp+2) || bitsleft < 16) return DECR_ILLEGALDATA; |
| } |
| |
| while ((this_run = LZX(block_remaining)) > 0 && togo > 0) { |
| if (this_run > togo) this_run = togo; |
| togo -= this_run; |
| LZX(block_remaining) -= this_run; |
| |
| /* apply 2^x-1 mask */ |
| window_posn &= window_size - 1; |
| /* runs can't straddle the window wraparound */ |
| if ((window_posn + this_run) > window_size) |
| return DECR_DATAFORMAT; |
| |
| switch (LZX(block_type)) { |
| |
| case LZX_BLOCKTYPE_VERBATIM: |
| while (this_run > 0) { |
| READ_HUFFSYM(MAINTREE, main_element); |
| |
| if (main_element < LZX_NUM_CHARS) { |
| /* literal: 0 to LZX_NUM_CHARS-1 */ |
| window[window_posn++] = main_element; |
| this_run--; |
| } |
| else { |
| /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ |
| main_element -= LZX_NUM_CHARS; |
| |
| match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; |
| if (match_length == LZX_NUM_PRIMARY_LENGTHS) { |
| READ_HUFFSYM(LENGTH, length_footer); |
| match_length += length_footer; |
| } |
| match_length += LZX_MIN_MATCH; |
| |
| match_offset = main_element >> 3; |
| |
| if (match_offset > 2) { |
| /* not repeated offset */ |
| if (match_offset != 3) { |
| extra = CAB(extra_bits)[match_offset]; |
| READ_BITS(verbatim_bits, extra); |
| match_offset = CAB(lzx_position_base)[match_offset] |
| - 2 + verbatim_bits; |
| } |
| else { |
| match_offset = 1; |
| } |
| |
| /* update repeated offset LRU queue */ |
| R2 = R1; R1 = R0; R0 = match_offset; |
| } |
| else if (match_offset == 0) { |
| match_offset = R0; |
| } |
| else if (match_offset == 1) { |
| match_offset = R1; |
| R1 = R0; R0 = match_offset; |
| } |
| else /* match_offset == 2 */ { |
| match_offset = R2; |
| R2 = R0; R0 = match_offset; |
| } |
| |
| rundest = window + window_posn; |
| this_run -= match_length; |
| |
| /* copy any wrapped around source data */ |
| if (window_posn >= match_offset) { |
| /* no wrap */ |
| runsrc = rundest - match_offset; |
| } else { |
| runsrc = rundest + (window_size - match_offset); |
| copy_length = match_offset - window_posn; |
| if (copy_length < match_length) { |
| match_length -= copy_length; |
| window_posn += copy_length; |
| while (copy_length-- > 0) *rundest++ = *runsrc++; |
| runsrc = window; |
| } |
| } |
| window_posn += match_length; |
| |
| /* copy match data - no worries about destination wraps */ |
| while (match_length-- > 0) *rundest++ = *runsrc++; |
| } |
| } |
| break; |
| |
| case LZX_BLOCKTYPE_ALIGNED: |
| while (this_run > 0) { |
| READ_HUFFSYM(MAINTREE, main_element); |
| |
| if (main_element < LZX_NUM_CHARS) { |
| /* literal: 0 to LZX_NUM_CHARS-1 */ |
| window[window_posn++] = main_element; |
| this_run--; |
| } |
| else { |
| /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ |
| main_element -= LZX_NUM_CHARS; |
| |
| match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; |
| if (match_length == LZX_NUM_PRIMARY_LENGTHS) { |
| READ_HUFFSYM(LENGTH, length_footer); |
| match_length += length_footer; |
| } |
| match_length += LZX_MIN_MATCH; |
| |
| match_offset = main_element >> 3; |
| |
| if (match_offset > 2) { |
| /* not repeated offset */ |
| extra = CAB(extra_bits)[match_offset]; |
| match_offset = CAB(lzx_position_base)[match_offset] - 2; |
| if (extra > 3) { |
| /* verbatim and aligned bits */ |
| extra -= 3; |
| READ_BITS(verbatim_bits, extra); |
| match_offset += (verbatim_bits << 3); |
| READ_HUFFSYM(ALIGNED, aligned_bits); |
| match_offset += aligned_bits; |
| } |
| else if (extra == 3) { |
| /* aligned bits only */ |
| READ_HUFFSYM(ALIGNED, aligned_bits); |
| match_offset += aligned_bits; |
| } |
| else if (extra > 0) { /* extra==1, extra==2 */ |
| /* verbatim bits only */ |
| READ_BITS(verbatim_bits, extra); |
| match_offset += verbatim_bits; |
| } |
| else /* extra == 0 */ { |
| /* ??? */ |
| match_offset = 1; |
| } |
| |
| /* update repeated offset LRU queue */ |
| R2 = R1; R1 = R0; R0 = match_offset; |
| } |
| else if (match_offset == 0) { |
| match_offset = R0; |
| } |
| else if (match_offset == 1) { |
| match_offset = R1; |
| R1 = R0; R0 = match_offset; |
| } |
| else /* match_offset == 2 */ { |
| match_offset = R2; |
| R2 = R0; R0 = match_offset; |
| } |
| |
| rundest = window + window_posn; |
| this_run -= match_length; |
| |
| /* copy any wrapped around source data */ |
| if (window_posn >= match_offset) { |
| /* no wrap */ |
| runsrc = rundest - match_offset; |
| } else { |
| runsrc = rundest + (window_size - match_offset); |
| copy_length = match_offset - window_posn; |
| if (copy_length < match_length) { |
| match_length -= copy_length; |
| window_posn += copy_length; |
| while (copy_length-- > 0) *rundest++ = *runsrc++; |
| runsrc = window; |
| } |
| } |
| window_posn += match_length; |
| |
| /* copy match data - no worries about destination wraps */ |
| while (match_length-- > 0) *rundest++ = *runsrc++; |
| } |
| } |
| break; |
| |
| case LZX_BLOCKTYPE_UNCOMPRESSED: |
| if ((inpos + this_run) > endinp) return DECR_ILLEGALDATA; |
| memcpy(window + window_posn, inpos, (size_t) this_run); |
| inpos += this_run; window_posn += this_run; |
| break; |
| |
| default: |
| return DECR_ILLEGALDATA; /* might as well */ |
| } |
| |
| } |
| } |
| |
| if (togo != 0) return DECR_ILLEGALDATA; |
| memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) - |
| outlen, (size_t) outlen); |
| |
| LZX(window_posn) = window_posn; |
| LZX(R0) = R0; |
| LZX(R1) = R1; |
| LZX(R2) = R2; |
| |
| /* intel E8 decoding */ |
| if ((LZX(frames_read)++ < 32768) && LZX(intel_filesize) != 0) { |
| if (outlen <= 6 || !LZX(intel_started)) { |
| LZX(intel_curpos) += outlen; |
| } |
| else { |
| cab_UBYTE *data = CAB(outbuf); |
| cab_UBYTE *dataend = data + outlen - 10; |
| cab_LONG curpos = LZX(intel_curpos); |
| cab_LONG filesize = LZX(intel_filesize); |
| cab_LONG abs_off, rel_off; |
| |
| LZX(intel_curpos) = curpos + outlen; |
| |
| while (data < dataend) { |
| if (*data++ != 0xE8) { curpos++; continue; } |
| abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24); |
| if ((abs_off >= -curpos) && (abs_off < filesize)) { |
| rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize; |
| data[0] = (cab_UBYTE) rel_off; |
| data[1] = (cab_UBYTE) (rel_off >> 8); |
| data[2] = (cab_UBYTE) (rel_off >> 16); |
| data[3] = (cab_UBYTE) (rel_off >> 24); |
| } |
| data += 4; |
| curpos += 5; |
| } |
| } |
| } |
| return DECR_OK; |
| } |
| |
| /********************************************************* |
| * find_cabs_in_file (internal) |
| */ |
| struct cabinet *find_cabs_in_file(LPCSTR name, cab_UBYTE search_buf[]) |
| { |
| struct cabinet *cab, *cab2, *firstcab = NULL, *linkcab = NULL; |
| cab_UBYTE *pstart = &search_buf[0], *pend, *p; |
| cab_off_t offset, caboff, cablen = 0, foffset = 0, filelen, length; |
| int state = 0, found = 0, ok = 0; |
| |
| TRACE("(name == %s)\n", debugstr_a(name)); |
| |
| /* open the file and search for cabinet headers */ |
| if ((cab = (struct cabinet *) calloc(1, sizeof(struct cabinet)))) { |
| cab->filename = name; |
| if (cabinet_open(cab)) { |
| filelen = cab->filelen; |
| for (offset = 0; (offset < filelen); offset += length) { |
| /* search length is either the full length of the search buffer, |
| * or the amount of data remaining to the end of the file, |
| * whichever is less. |
| */ |
| length = filelen - offset; |
| if (length > CAB_SEARCH_SIZE) length = CAB_SEARCH_SIZE; |
| |
| /* fill the search buffer with data from disk */ |
| if (!cabinet_read(cab, search_buf, length)) break; |
| |
| /* read through the entire buffer. */ |
| p = pstart; |
| pend = &search_buf[length]; |
| while (p < pend) { |
| switch (state) { |
| /* starting state */ |
| case 0: |
| /* we spend most of our time in this while loop, looking for |
| * a leading 'M' of the 'MSCF' signature |
| */ |
| while (*p++ != 0x4D && p < pend); |
| if (p < pend) state = 1; /* if we found tht 'M', advance state */ |
| break; |
| |
| /* verify that the next 3 bytes are 'S', 'C' and 'F' */ |
| case 1: state = (*p++ == 0x53) ? 2 : 0; break; |
| case 2: state = (*p++ == 0x43) ? 3 : 0; break; |
| case 3: state = (*p++ == 0x46) ? 4 : 0; break; |
| |
| /* we don't care about bytes 4-7 */ |
| /* bytes 8-11 are the overall length of the cabinet */ |
| case 8: cablen = *p++; state++; break; |
| case 9: cablen |= *p++ << 8; state++; break; |
| case 10: cablen |= *p++ << 16; state++; break; |
| case 11: cablen |= *p++ << 24; state++; break; |
| |
| /* we don't care about bytes 12-15 */ |
| /* bytes 16-19 are the offset within the cabinet of the filedata */ |
| case 16: foffset = *p++; state++; break; |
| case 17: foffset |= *p++ << 8; state++; break; |
| case 18: foffset |= *p++ << 16; state++; break; |
| case 19: foffset |= *p++ << 24; |
| /* now we have received 20 bytes of potential cab header. */ |
| /* work out the offset in the file of this potential cabinet */ |
| caboff = offset + (p-pstart) - 20; |
| |
| /* check that the files offset is less than the alleged length |
| * of the cabinet, and that the offset + the alleged length are |
| * 'roughly' within the end of overall file length |
| */ |
| if ((foffset < cablen) && |
| ((caboff + foffset) < (filelen + 32)) && |
| ((caboff + cablen) < (filelen + 32)) ) |
| { |
| /* found a potential result - try loading it */ |
| found++; |
| cab2 = load_cab_offset(name, caboff); |
| if (cab2) { |
| /* success */ |
| ok++; |
| |
| /* cause the search to restart after this cab's data. */ |
| offset = caboff + cablen; |
| if (offset < cab->filelen) cabinet_seek(cab, offset); |
| length = 0; |
| p = pend; |
| |
| /* link the cab into the list */ |
| if (linkcab == NULL) firstcab = cab2; |
| else linkcab->next = cab2; |
| linkcab = cab2; |
| } |
| } |
| state = 0; |
| break; |
| default: |
| p++, state++; break; |
| } |
| } |
| } |
| cabinet_close(cab); |
| } |
| free(cab); |
| } |
| |
| /* if there were cabinets that were found but are not ok, point this out */ |
| if (found > ok) { |
| WARN("%s: found %d bad cabinets\n", debugstr_a(name), found-ok); |
| } |
| |
| /* if no cabinets were found, let the user know */ |
| if (!firstcab) { |
| WARN("%s: not a Microsoft cabinet file.\n", debugstr_a(name)); |
| } |
| return firstcab; |
| } |
| |
| /*********************************************************************** |
| * find_cabinet_file (internal) |
| * |
| * tries to find *cabname, from the directory path of origcab, correcting the |
| * case of *cabname if necessary, If found, writes back to *cabname. |
| */ |
| void find_cabinet_file(char **cabname, LPCSTR origcab) { |
| |
| char *tail, *cab, *name, *nextpart, nametmp[MAX_PATH]; |
| int found = 0; |
| |
| TRACE("(*cabname == ^%p, origcab == %s)\n", cabname ? *cabname : NULL, debugstr_a(origcab)); |
| |
| /* ensure we have a cabinet name at all */ |
| if (!(name = *cabname)) { |
| WARN("no cabinet name at all\n"); |
| } |
| |
| /* find if there's a directory path in the origcab */ |
| tail = origcab ? max(strrchr(origcab, '/'), strrchr(origcab, '\\')) : NULL; |
| |
| if ((cab = (char *) malloc(MAX_PATH))) { |
| /* add the directory path from the original cabinet name */ |
| if (tail) { |
| memcpy(cab, origcab, tail - origcab); |
| cab[tail - origcab] = '\0'; |
| } else { |
| /* default directory path of '.' */ |
| cab[0] = '.'; |
| cab[1] = '\0'; |
| } |
| |
| do { |
| TRACE("trying cab == %s\n", debugstr_a(cab)); |
| |
| /* we don't want null cabinet filenames */ |
| if (name[0] == '\0') { |
| WARN("null cab name\n"); |
| break; |
| } |
| |
| /* if there is a directory component in the cabinet name, |
| * look for that alone first |
| */ |
| nextpart = strchr(name, '\\'); |
| if (nextpart) *nextpart = '\0'; |
| |
| found = SearchPathA(cab, name, NULL, MAX_PATH, nametmp, NULL); |
| |
| /* if the component was not found, look for it in the current dir */ |
| if (!found) { |
| found = SearchPathA(".", name, NULL, MAX_PATH, nametmp, NULL); |
| } |
| |
| if (found) |
| TRACE("found: %s\n", debugstr_a(nametmp)); |
| else |
| TRACE("not found.\n"); |
| |
| /* restore the real name and skip to the next directory component |
| * or actual cabinet name |
| */ |
| if (nextpart) *nextpart = '\\', name = &nextpart[1]; |
| |
| /* while there is another directory component, and while we |
| * successfully found the current component |
| */ |
| } while (nextpart && found); |
| |
| /* if we found the cabinet, change the next cabinet's name. |
| * otherwise, pretend nothing happened |
| */ |
| if (found) { |
| free((void *) *cabname); |
| *cabname = cab; |
| memcpy(cab, nametmp, found+1); |
| TRACE("result: %s\n", debugstr_a(cab)); |
| } else { |
| free((void *) cab); |
| TRACE("result: nothing\n"); |
| } |
| } |
| } |
| |
| /************************************************************************ |
| * process_files (internal) |
| * |
| * this does the tricky job of running through every file in the cabinet, |
| * including spanning cabinets, and working out which file is in which |
| * folder in which cabinet. It also throws out the duplicate file entries |
| * that appear in spanning cabinets. There is memory leakage here because |
| * those entries are not freed. See the XAD CAB client (function CAB_GetInfo |
| * in CAB.c) for an implementation of this that correctly frees the discarded |
| * file entries. |
| */ |
| struct cab_file *process_files(struct cabinet *basecab) { |
| struct cabinet *cab; |
| struct cab_file *outfi = NULL, *linkfi = NULL, *nextfi, *fi, *cfi; |
| struct cab_folder *fol, *firstfol, *lastfol = NULL, *predfol; |
| int i, mergeok; |
| |
| FIXME("(basecab == ^%p): Memory leak.\n", basecab); |
| |
| for (cab = basecab; cab; cab = cab->nextcab) { |
| /* firstfol = first folder in this cabinet */ |
| /* lastfol = last folder in this cabinet */ |
| /* predfol = last folder in previous cabinet (or NULL if first cabinet) */ |
| predfol = lastfol; |
| firstfol = cab->folders; |
| for (lastfol = firstfol; lastfol->next;) lastfol = lastfol->next; |
| mergeok = 1; |
| |
| for (fi = cab->files; fi; fi = nextfi) { |
| i = fi->index; |
| nextfi = fi->next; |
| |
| if (i < cffileCONTINUED_FROM_PREV) { |
| for (fol = firstfol; fol && i--; ) fol = fol->next; |
| fi->folder = fol; /* NULL if an invalid folder index */ |
| } |
| else { |
| /* folder merging */ |
| if (i == cffileCONTINUED_TO_NEXT |
| || i == cffileCONTINUED_PREV_AND_NEXT) { |
| if (cab->nextcab && !lastfol->contfile) lastfol->contfile = fi; |
| } |
| |
| if (i == cffileCONTINUED_FROM_PREV |
| || i == cffileCONTINUED_PREV_AND_NEXT) { |
| /* these files are to be continued in yet another |
| * cabinet, don't merge them in just yet */ |
| if (i == cffileCONTINUED_PREV_AND_NEXT) mergeok = 0; |
| |
| /* only merge once per cabinet */ |
| if (predfol) { |
| if ((cfi = predfol->contfile) |
| && (cfi->offset == fi->offset) |
| && (cfi->length == fi->length) |
| && (strcmp(cfi->filename, fi->filename) == 0) |
| && (predfol->comp_type == firstfol->comp_type)) { |
| /* increase the number of splits */ |
| if ((i = ++(predfol->num_splits)) > CAB_SPLITMAX) { |
| mergeok = 0; |
| ERR("%s: internal error: CAB_SPLITMAX exceeded. please report this to wine-devel@winehq.org)\n", |
| debugstr_a(basecab->filename)); |
| } |
| else { |
| /* copy information across from the merged folder */ |
| predfol->offset[i] = firstfol->offset[0]; |
| predfol->cab[i] = firstfol->cab[0]; |
| predfol->next = firstfol->next; |
| predfol->contfile = firstfol->contfile; |
| |
| if (firstfol == lastfol) lastfol = predfol; |
| firstfol = predfol; |
| predfol = NULL; /* don't merge again within this cabinet */ |
| } |
| } |
| else { |
| /* if the folders won't merge, don't add their files */ |
| mergeok = 0; |
| } |
| } |
| |
| if (mergeok) fi->folder = firstfol; |
| } |
| } |
| |
| if (fi->folder) { |
| if (linkfi) linkfi->next = fi; else outfi = fi; |
| linkfi = fi; |
| } |
| } /* for (fi= .. */ |
| } /* for (cab= ...*/ |
| |
| return outfi; |
| } |
| |
| /**************************************************************** |
| * convertUTF (internal) |
| * |
| * translate UTF -> ASCII |
| * |
| * UTF translates two-byte unicode characters into 1, 2 or 3 bytes. |
| * %000000000xxxxxxx -> %0xxxxxxx |
| * %00000xxxxxyyyyyy -> %110xxxxx %10yyyyyy |
| * %xxxxyyyyyyzzzzzz -> %1110xxxx %10yyyyyy %10zzzzzz |
| * |
| * Therefore, the inverse is as follows: |
| * First char: |
| * 0x00 - 0x7F = one byte char |
| * 0x80 - 0xBF = invalid |
| * 0xC0 - 0xDF = 2 byte char (next char only 0x80-0xBF is valid) |
| * 0xE0 - 0xEF = 3 byte char (next 2 chars only 0x80-0xBF is valid) |
| * 0xF0 - 0xFF = invalid |
| * |
| * FIXME: use a winapi to do this |
| */ |
| int convertUTF(cab_UBYTE *in) { |
| cab_UBYTE c, *out = in, *end = in + strlen((char *) in) + 1; |
| cab_ULONG x; |
| |
| do { |
| /* read unicode character */ |
| if ((c = *in++) < 0x80) x = c; |
| else { |
| if (c < 0xC0) return 0; |
| else if (c < 0xE0) { |
| x = (c & 0x1F) << 6; |
| if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F); |
| } |
| else if (c < 0xF0) { |
| x = (c & 0xF) << 12; |
| if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F)<<6; |
| if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F); |
| } |
| else return 0; |
| } |
| |
| /* terrible unicode -> ASCII conversion */ |
| if (x > 127) x = '_'; |
| |
| if (in > end) return 0; /* just in case */ |
| } while ((*out++ = (cab_UBYTE) x)); |
| return 1; |
| } |
| |
| /**************************************************** |
| * NONEdecompress (internal) |
| */ |
| int NONEdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) |
| { |
| if (inlen != outlen) return DECR_ILLEGALDATA; |
| memcpy(CAB(outbuf), CAB(inbuf), (size_t) inlen); |
| return DECR_OK; |
| } |
| |
| /************************************************** |
| * checksum (internal) |
| */ |
| cab_ULONG checksum(cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum) { |
| int len; |
| cab_ULONG ul = 0; |
| |
| for (len = bytes >> 2; len--; data += 4) { |
| csum ^= ((data[0]) | (data[1]<<8) | (data[2]<<16) | (data[3]<<24)); |
| } |
| |
| switch (bytes & 3) { |
| case 3: ul |= *data++ << 16; |
| case 2: ul |= *data++ << 8; |
| case 1: ul |= *data; |
| } |
| csum ^= ul; |
| |
| return csum; |
| } |
| |
| /********************************************************** |
| * decompress (internal) |
| */ |
| int decompress(struct cab_file *fi, int savemode, int fix, cab_decomp_state *decomp_state) |
| { |
| cab_ULONG bytes = savemode ? fi->length : fi->offset - CAB(offset); |
| struct cabinet *cab = CAB(current)->cab[CAB(split)]; |
| cab_UBYTE buf[cfdata_SIZEOF], *data; |
| cab_UWORD inlen, len, outlen, cando; |
| cab_ULONG cksum; |
| cab_LONG err; |
| |
| TRACE("(fi == ^%p, savemode == %d, fix == %d)\n", fi, savemode, fix); |
| |
| while (bytes > 0) { |
| /* cando = the max number of bytes we can do */ |
| cando = CAB(outlen); |
| if (cando > bytes) cando = bytes; |
| |
| /* if cando != 0 */ |
| if (cando && savemode) |
| file_write(fi, CAB(outpos), cando); |
| |
| CAB(outpos) += cando; |
| CAB(outlen) -= cando; |
| bytes -= cando; if (!bytes) break; |
| |
| /* we only get here if we emptied the output buffer */ |
| |
| /* read data header + data */ |
| inlen = outlen = 0; |
| while (outlen == 0) { |
| /* read the block header, skip the reserved part */ |
| if (!cabinet_read(cab, buf, cfdata_SIZEOF)) return DECR_INPUT; |
| cabinet_skip(cab, cab->block_resv); |
| |
| /* we shouldn't get blocks over CAB_INPUTMAX in size */ |
| data = CAB(inbuf) + inlen; |
| len = EndGetI16(buf+cfdata_CompressedSize); |
| inlen += len; |
| if (inlen > CAB_INPUTMAX) return DECR_INPUT; |
| if (!cabinet_read(cab, data, len)) return DECR_INPUT; |
| |
| /* clear two bytes after read-in data */ |
| data[len+1] = data[len+2] = 0; |
| |
| /* perform checksum test on the block (if one is stored) */ |
| cksum = EndGetI32(buf+cfdata_CheckSum); |
| if (cksum && cksum != checksum(buf+4, 4, checksum(data, len, 0))) { |
| /* checksum is wrong */ |
| if (fix && ((fi->folder->comp_type & cffoldCOMPTYPE_MASK) |
| == cffoldCOMPTYPE_MSZIP)) |
| { |
| WARN("%s: checksum failed\n", debugstr_a(fi->filename)); |
| } |
| else { |
| return DECR_CHECKSUM; |
| } |
| } |
| |
| /* outlen=0 means this block was part of a split block */ |
| outlen = EndGetI16(buf+cfdata_UncompressedSize); |
| if (outlen == 0) { |
| cabinet_close(cab); |
| cab = CAB(current)->cab[++CAB(split)]; |
| if (!cabinet_open(cab)) return DECR_INPUT; |
| cabinet_seek(cab, CAB(current)->offset[CAB(split)]); |
| } |
| } |
| |
| /* decompress block */ |
| if ((err = CAB(decompress)(inlen, outlen, decomp_state))) { |
| if (fix && ((fi->folder->comp_type & cffoldCOMPTYPE_MASK) |
| == cffoldCOMPTYPE_MSZIP)) |
| { |
| ERR("%s: failed decrunching block\n", debugstr_a(fi->filename)); |
| } |
| else { |
| return err; |
| } |
| } |
| CAB(outlen) = outlen; |
| CAB(outpos) = CAB(outbuf); |
| } |
| |
| return DECR_OK; |
| } |
| |
| /**************************************************************** |
| * extract_file (internal) |
| * |
| * workhorse to extract a particular file from a cab |
| */ |
| void extract_file(struct cab_file *fi, int lower, int fix, LPCSTR dir, cab_decomp_state *decomp_state) |
| { |
| struct cab_folder *fol = fi->folder, *oldfol = CAB(current); |
| cab_LONG err = DECR_OK; |
| |
| TRACE("(fi == ^%p, lower == %d, fix == %d, dir == %s)\n", fi, lower, fix, debugstr_a(dir)); |
| |
| /* is a change of folder needed? do we need to reset the current folder? */ |
| if (fol != oldfol || fi->offset < CAB(offset)) { |
| cab_UWORD comptype = fol->comp_type; |
| int ct1 = comptype & cffoldCOMPTYPE_MASK; |
| int ct2 = oldfol ? (oldfol->comp_type & cffoldCOMPTYPE_MASK) : 0; |
| |
| /* if the archiver has changed, call the old archiver's free() function */ |
| if (ct1 != ct2) { |
| switch (ct2) { |
| case cffoldCOMPTYPE_LZX: |
| if (LZX(window)) { |
| free(LZX(window)); |
| LZX(window) = NULL; |
| } |
| break; |
| case cffoldCOMPTYPE_QUANTUM: |
| if (QTM(window)) { |
| free(QTM(window)); |
| QTM(window) = NULL; |
| } |
| break; |
| } |
| } |
| |
| switch (ct1) { |
| case cffoldCOMPTYPE_NONE: |
| CAB(decompress) = NONEdecompress; |
| break; |
| |
| case cffoldCOMPTYPE_MSZIP: |
| CAB(decompress) = ZIPdecompress; |
| break; |
| |
| case cffoldCOMPTYPE_QUANTUM: |
| CAB(decompress) = QTMdecompress; |
| err = QTMinit((comptype >> 8) & 0x1f, (comptype >> 4) & 0xF, decomp_state); |
| break; |
| |
| case cffoldCOMPTYPE_LZX: |
| CAB(decompress) = LZXdecompress; |
| err = LZXinit((comptype >> 8) & 0x1f, decomp_state); |
| break; |
| |
| default: |
| err = DECR_DATAFORMAT; |
| } |
| if (err) goto exit_handler; |
| |
| /* initialisation OK, set current folder and reset offset */ |
| if (oldfol) cabinet_close(oldfol->cab[CAB(split)]); |
| if (!cabinet_open(fol->cab[0])) goto exit_handler; |
| cabinet_seek(fol->cab[0], fol->offset[0]); |
| CAB(current) = fol; |
| CAB(offset) = 0; |
| CAB(outlen) = 0; /* discard existing block */ |
| CAB(split) = 0; |
| } |
| |
| if (fi->offset > CAB(offset)) { |
| /* decode bytes and send them to /dev/null */ |
| if ((err = decompress(fi, 0, fix, decomp_state))) goto exit_handler; |
| CAB(offset) = fi->offset; |
| } |
| |
| if (!file_open(fi, lower, dir)) return; |
| err = decompress(fi, 1, fix, decomp_state); |
| if (err) CAB(current) = NULL; else CAB(offset) += fi->length; |
| file_close(fi); |
| |
| exit_handler: |
| if (err) { |
| const char *errmsg; |
| const char *cabname; |
| switch (err) { |
| case DECR_NOMEMORY: |
| errmsg = "out of memory!\n"; break; |
| case DECR_ILLEGALDATA: |
| errmsg = "%s: illegal or corrupt data\n"; break; |
| case DECR_DATAFORMAT: |
| errmsg = "%s: unsupported data format\n"; break; |
| case DECR_CHECKSUM: |
| errmsg = "%s: checksum error\n"; break; |
| case DECR_INPUT: |
| errmsg = "%s: input error\n"; break; |
| case DECR_OUTPUT: |
| errmsg = "%s: output error\n"; break; |
| default: |
| errmsg = "%s: unknown error (BUG)\n"; |
| } |
| |
| if (CAB(current)) { |
| cabname = (CAB(current)->cab[CAB(split)]->filename); |
| } |
| else { |
| cabname = (fi->folder->cab[0]->filename); |
| } |
| |
| ERR(errmsg, cabname); |
| } |
| } |
| |
| /********************************************************* |
| * print_fileinfo (internal) |
| */ |
| void print_fileinfo(struct cab_file *fi) { |
| int d = fi->date, t = fi->time; |
| char *fname = NULL; |
| |
| if (fi->attribs & cffile_A_NAME_IS_UTF) { |
| fname = malloc(strlen(fi->filename) + 1); |
| if (fname) { |
| strcpy(fname, fi->filename); |
| convertUTF((cab_UBYTE *) fname); |
| } |
| } |
| |
| TRACE("%9u | %02d.%02d.%04d %02d:%02d:%02d | %s\n", |
| fi->length, |
| d & 0x1f, (d>>5) & 0xf, (d>>9) + 1980, |
| t >> 11, (t>>5) & 0x3f, (t << 1) & 0x3e, |
| fname ? fname : fi->filename |
| ); |
| |
| if (fname) free(fname); |
| } |
| |
| /**************************************************************************** |
| * process_cabinet (internal) |
| * |
| * called to simply "extract" a cabinet file. Will find every cabinet file |
| * in that file, search for every chained cabinet attached to those cabinets, |
| * and will either extract the cabinets, or ? (call a callback?) |
| * |
| * PARAMS |
| * cabname [I] name of the cabinet file to extract |
| * dir [I] directory to extract to |
| * fix [I] attempt to process broken cabinets |
| * lower [I] ? (lower case something or other?) |
| * dest [O] |
| * |
| * RETURNS |
| * Success: TRUE |
| * Failure: FALSE |
| */ |
| BOOL process_cabinet(LPCSTR cabname, LPCSTR dir, BOOL fix, BOOL lower, EXTRACTdest *dest) |
| { |
| struct cabinet *basecab, *cab, *cab1, *cab2; |
| struct cab_file *filelist, *fi; |
| struct ExtractFileList **destlistptr = &(dest->filelist); |
| |
| /* The first result of a search will be returned, and |
| * the remaining results will be chained to it via the cab->next structure |
| * member. |
| */ |
| cab_UBYTE search_buf[CAB_SEARCH_SIZE]; |
| |
| cab_decomp_state decomp_state_local; |
| cab_decomp_state *decomp_state = &decomp_state_local; |
| |
| /* has the list-mode header been seen before? */ |
| int viewhdr = 0; |
| |
| ZeroMemory(decomp_state, sizeof(cab_decomp_state)); |
| |
| TRACE("Extract %s\n", debugstr_a(cabname)); |
| |
| /* load the file requested */ |
| basecab = find_cabs_in_file(cabname, search_buf); |
| if (!basecab) return FALSE; |
| |
| /* iterate over all cabinets found in that file */ |
| for (cab = basecab; cab; cab=cab->next) { |
| |
| /* bi-directionally load any spanning cabinets -- backwards */ |
| for (cab1 = cab; cab1->flags & cfheadPREV_CABINET; cab1 = cab1->prevcab) { |
| TRACE("%s: extends backwards to %s (%s)\n", debugstr_a(cabname), |
| debugstr_a(cab1->prevname), debugstr_a(cab1->previnfo)); |
| find_cabinet_file(&(cab1->prevname), cabname); |
| if (!(cab1->prevcab = load_cab_offset(cab1->prevname, 0))) { |
| ERR("%s: can't read previous cabinet %s\n", debugstr_a(cabname), debugstr_a(cab1->prevname)); |
| break; |
| } |
| cab1->prevcab->nextcab = cab1; |
| } |
| |
| /* bi-directionally load any spanning cabinets -- forwards */ |
| for (cab2 = cab; cab2->flags & cfheadNEXT_CABINET; cab2 = cab2->nextcab) { |
| TRACE("%s: extends to %s (%s)\n", debugstr_a(cabname), |
| debugstr_a(cab2->nextname), debugstr_a(cab2->nextinfo)); |
| find_cabinet_file(&(cab2->nextname), cabname); |
| if (!(cab2->nextcab = load_cab_offset(cab2->nextname, 0))) { |
| ERR("%s: can't read next cabinet %s\n", debugstr_a(cabname), debugstr_a(cab2->nextname)); |
| break; |
| } |
| cab2->nextcab->prevcab = cab2; |
| } |
| |
| filelist = process_files(cab1); |
| CAB(current) = NULL; |
| |
| if (!viewhdr) { |
| TRACE("File size | Date Time | Name\n"); |
| TRACE("----------+---------------------+-------------\n"); |
| viewhdr = 1; |
| } |
| for (fi = filelist; fi; fi = fi->next) { |
| print_fileinfo(fi); |
| dest->filecount++; |
| } |
| TRACE("Beginning Extraction...\n"); |
| for (fi = filelist; fi; fi = fi->next) { |
| TRACE(" extracting: %s\n", debugstr_a(fi->filename)); |
| extract_file(fi, lower, fix, dir, decomp_state); |
| sprintf(dest->lastfile, "%s%s%s", |
| strlen(dest->directory) ? dest->directory : "", |
| strlen(dest->directory) ? "\\": "", |
| fi->filename); |
| *destlistptr = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, |
| sizeof(struct ExtractFileList)); |
| if(*destlistptr) { |
| (*destlistptr)->unknown = TRUE; /* FIXME: were do we get the value? */ |
| (*destlistptr)->filename = HeapAlloc(GetProcessHeap(), 0, ( |
| strlen(fi->filename)+1)); |
| if((*destlistptr)->filename) |
| lstrcpyA((*destlistptr)->filename, fi->filename); |
| destlistptr = &((*destlistptr)->next); |
| } |
| } |
| } |
| |
| TRACE("Finished processing cabinet.\n"); |
| |
| return TRUE; |
| } |