| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file memcmplen.h |
| /// \brief Optimized comparison of two buffers |
| // |
| // Author: Lasse Collin |
| // |
| // This file has been put into the public domain. |
| // You can do whatever you want with this file. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifndef LZMA_MEMCMPLEN_H |
| #define LZMA_MEMCMPLEN_H |
| |
| #include "common.h" |
| |
| #ifdef HAVE_IMMINTRIN_H |
| # include <immintrin.h> |
| #endif |
| |
| |
| /// Find out how many equal bytes the two buffers have. |
| /// |
| /// \param buf1 First buffer |
| /// \param buf2 Second buffer |
| /// \param len How many bytes have already been compared and will |
| /// be assumed to match |
| /// \param limit How many bytes to compare at most, including the |
| /// already-compared bytes. This must be significantly |
| /// smaller than UINT32_MAX to avoid integer overflows. |
| /// Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past |
| /// the specified limit from both buf1 and buf2. |
| /// |
| /// \return Number of equal bytes in the buffers is returned. |
| /// This is always at least len and at most limit. |
| /// |
| /// \note LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read. |
| /// It's rounded up to 2^n. This extra amount needs to be |
| /// allocated in the buffers being used. It needs to be |
| /// initialized too to keep Valgrind quiet. |
| static inline uint32_t lzma_attribute((__always_inline__)) |
| lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2, |
| uint32_t len, uint32_t limit) |
| { |
| assert(len <= limit); |
| assert(limit <= UINT32_MAX / 2); |
| |
| #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \ |
| && ((TUKLIB_GNUC_REQ(3, 4) && defined(__x86_64__)) \ |
| || (defined(__INTEL_COMPILER) && defined(__x86_64__)) \ |
| || (defined(__INTEL_COMPILER) && defined(_M_X64)) \ |
| || (defined(_MSC_VER) && defined(_M_X64))) |
| // NOTE: This will use 64-bit unaligned access which |
| // TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit, but |
| // it's convenient here at least as long as it's x86-64 only. |
| // |
| // I keep this x86-64 only for now since that's where I know this |
| // to be a good method. This may be fine on other 64-bit CPUs too. |
| // On big endian one should use xor instead of subtraction and switch |
| // to __builtin_clzll(). |
| #define LZMA_MEMCMPLEN_EXTRA 8 |
| while (len < limit) { |
| const uint64_t x = *(const uint64_t *)(buf1 + len) |
| - *(const uint64_t *)(buf2 + len); |
| if (x != 0) { |
| # if defined(_M_X64) // MSVC or Intel C compiler on Windows |
| unsigned long tmp; |
| _BitScanForward64(&tmp, x); |
| len += (uint32_t)tmp >> 3; |
| # else // GCC, clang, or Intel C compiler |
| len += (uint32_t)__builtin_ctzll(x) >> 3; |
| # endif |
| return my_min(len, limit); |
| } |
| |
| len += 8; |
| } |
| |
| return limit; |
| |
| #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \ |
| && defined(HAVE__MM_MOVEMASK_EPI8) \ |
| && ((defined(__GNUC__) && defined(__SSE2_MATH__)) \ |
| || (defined(__INTEL_COMPILER) && defined(__SSE2__)) \ |
| || (defined(_MSC_VER) && defined(_M_IX86_FP) \ |
| && _M_IX86_FP >= 2)) |
| // NOTE: Like above, this will use 128-bit unaligned access which |
| // TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit. |
| // |
| // SSE2 version for 32-bit and 64-bit x86. On x86-64 the above |
| // version is sometimes significantly faster and sometimes |
| // slightly slower than this SSE2 version, so this SSE2 |
| // version isn't used on x86-64. |
| # define LZMA_MEMCMPLEN_EXTRA 16 |
| while (len < limit) { |
| const uint32_t x = 0xFFFF ^ _mm_movemask_epi8(_mm_cmpeq_epi8( |
| _mm_loadu_si128((const __m128i *)(buf1 + len)), |
| _mm_loadu_si128((const __m128i *)(buf2 + len)))); |
| |
| if (x != 0) { |
| # if defined(__INTEL_COMPILER) |
| len += _bit_scan_forward(x); |
| # elif defined(_MSC_VER) |
| unsigned long tmp; |
| _BitScanForward(&tmp, x); |
| len += tmp; |
| # else |
| len += __builtin_ctz(x); |
| # endif |
| return my_min(len, limit); |
| } |
| |
| len += 16; |
| } |
| |
| return limit; |
| |
| #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN) |
| // Generic 32-bit little endian method |
| # define LZMA_MEMCMPLEN_EXTRA 4 |
| while (len < limit) { |
| uint32_t x = *(const uint32_t *)(buf1 + len) |
| - *(const uint32_t *)(buf2 + len); |
| if (x != 0) { |
| if ((x & 0xFFFF) == 0) { |
| len += 2; |
| x >>= 16; |
| } |
| |
| if ((x & 0xFF) == 0) |
| ++len; |
| |
| return my_min(len, limit); |
| } |
| |
| len += 4; |
| } |
| |
| return limit; |
| |
| #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN) |
| // Generic 32-bit big endian method |
| # define LZMA_MEMCMPLEN_EXTRA 4 |
| while (len < limit) { |
| uint32_t x = *(const uint32_t *)(buf1 + len) |
| ^ *(const uint32_t *)(buf2 + len); |
| if (x != 0) { |
| if ((x & 0xFFFF0000) == 0) { |
| len += 2; |
| x <<= 16; |
| } |
| |
| if ((x & 0xFF000000) == 0) |
| ++len; |
| |
| return my_min(len, limit); |
| } |
| |
| len += 4; |
| } |
| |
| return limit; |
| |
| #else |
| // Simple portable version that doesn't use unaligned access. |
| # define LZMA_MEMCMPLEN_EXTRA 0 |
| while (len < limit && buf1[len] == buf2[len]) |
| ++len; |
| |
| return len; |
| #endif |
| } |
| |
| #endif |